
|| Jai Sri Gurudev|| 

Sri Adichunchanagiri Shikshana Trust®  

SJB  INSTITUTE  OF  TECHNOLOGY 
No. 67, BGS Health & Education City, Dr. Vishnuvardhan Road, Kengeri, Bengaluru -560060 

Accredited by NAAC, Accredited by NBA. Certified by ISO 9001-2015 

 

Department of Computer Science & Engineering 

 

Subject: Automata Theory & Computability 

Subject Code: 18CS54 

Sem:  V  



Dr. Gopalakrishna M T, 
      Professor,  CSE 

18CS54 
Automata Theory & 
Computability 

Module-1 
Review of 
Mathematical 
Theory 

gopalakrishnamt@sjbit.edu.in 

ll Jai Sri Gurudev ll 

      
S J B INSTITUTE OF 

TECHNOLOGY 
  



Topics to be covered 

• Introduction 

• Mathematical Preliminaries & Terminology 

• Languages 

• Strings 



Introduction 

Computer Science stems from two starting points: 

Mathematics: What can be computed? 

And what cannot be computed? 

Electrical Engineering: How can we build computers? 

Not in this course. 
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Introduction 

Computability Theory deals with the profound mathematical basis 

for Computer Science, yet it has some interesting practical 

ramifications  

 that I will try to point out sometimes. 

The question we will try to answer in this course is: 

“What can be computed? What Cannot be computed and where is 

the line between the two?” 
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Computational Models 

A Computational Model is a mathematical object (Defined on paper) 

that enables us to reason about computation and to study the 

properties and limitations of computing. 

We will deal with Three principal computational models in increasing 

order of Computational Power. 
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Computational Models 

We will deal with three principal models of computations: 

1. Finite Automaton (in short FA). 

recognizes Regular Languages . 

2. Stack Automaton. 

recognizes Context Free Languages . 

3. Turing Machines (in short TM). 

recognizes Computable Languages . 
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Formal Language and Automata Theory 



Formal Language and Automata Theory 



What is Automata Theory ? 

Study of Abstract Machines  Machine Which are not implemented but 
represented by Using some Formal Notations  

Input tape 

Control Unit 
Temporary Storage 

Output 

 An Automata is a Abstract Model of a 
Digital Computer, which operates in 
discrete time frame. 

  The Automata reads the input, produce 
the output depending on the state it is in 
and can make decision in transferring the 
input into the output. 

It is also Basis for the theory of 
Formal language. 

Invented by “ALAN TURING” 
in (1912-1954) 



Different Kinds of Automata 

Finite Automata (FA) Pushdown Automata(PDA) Turing Machine(TM) 

Power of Automata's  

< < 



What is a Finite Automata (FA) 

Branch of Automata Theory  It is Mathematical Model of a Machine 

Used to represent Behavioural Model of Machines 

String  

Input  

Finite  
Automata 

“Accept or 
Reject” 

• Finite Automata consists of 
finite set of states and 
transitions from one state to 
another state, that occurs on 
input symbols chosen from 
an input alphabets. OR 

• Formal Definition FA 
      Defined by 5 Tuples which is       
       denoted by M. 

 M = (Q, Σ, , q0, F) 
where 

Q is the finite set of states Σ is the alphabet 

 : Q  Σ → Q  is the transition function 
q0  Q is the start state 

F  Q is the set of accept states 



How do you represent the FA? 

Represented by Two Ways 

Transition Diagram  Transitional Table 

Directed Graph 

0 

q0 

0 

q1 

1 

1 

{ w | w has an even number of 1s} 

 0 1 

q0 q0 q1 

q1 q1 q0 



Transition Diagram  

q2 q1 
q0 q3 q4 

q5 

Initial State 
represented by 
Arrow  

States represented by Circle 
Transitions represented 
by unidirectional Arrow 

Final States Represented by 
Double Circles 

a b b a 

a a 
a,b b b 

a, b 



Some Mathematical 
Preliminaries 



Set  

• A set is a collection of objects. 

• The objects in a set are called elements of the set. 

• Examples: 

1. A = {11, 12, 21, 22} 

2. B = {11, 12, 21, 11, 12, 22) 

3. C  = {x | x is odd integer greater than 1} 

4. D  = {x | x Є B and x ≤ 11} 

 

 

Roster Notation 

Set-builder Notation 



Operations on Sets 

• Operations on the sets are: 

1. Complement 

2. Union 

3. Intersection 

4. Set Difference 

5. Symmetric Difference 

6. Cartesian product 

 

 

• The complement of a set A is the set 
A’ of everything that is not an 

element of A from Universal Set U. 

 

 

 

 

 

 

• Example: 

U = {1,2,3,4,5} 

A = {1,2} 

A’ = {3,4,5} 

 

 

𝐴’ =  *𝑥 ∈  𝑈 | 𝑥 ∉  𝐴+ 

U 
A 



Operations on Sets 

• Operations on the sets are: 

1. Complement 

2. Union 

3. Intersection 

4. Set Difference 

5. Symmetric Difference 

6. Cartesian product 

 

 

• The Union (𝐴 𝑈 𝐵) is a collection of 
all distinct elements from both the 

set A and B. 

 

 

 

 

 

 

• Example: 

A = {1, 3, 5, 7, 9} 

B = {1, 2, 3, 4, 5} 

A U B = {1, 2, 3, 4, 5, 7, 9} 

 

 

𝐴 𝑈 𝐵 =  *𝑥 | 𝑥 ∈  𝐴 𝑜𝑟 𝑥 ∈  𝐵+ 

U 

𝐵 𝐴 



Operations on Sets 

• Operations on the sets are: 

1. Complement 

2. Union 

3. Intersection 

4. Set Difference 

5. Symmetric Difference 

6. Cartesian product 

 

 

• The intersection A ∩ B of two sets 
A and B is the set that contains all 
elements of A that also belong to 
B, but no other elements. 

 

 

 

 

 

 

• Example: 

A = {1, 3, 5, 7, 9} 

B = {1, 2, 3, 4, 5} 

A ∩ B = {1, 3, 5} 

 

 

𝐴 ∩ 𝐵 =  *𝑥 | 𝑥 ∈  𝐴 𝑎𝑛𝑑 𝑥 ∈  𝐵+ 

U 
𝐴 𝐵 



Operations on Sets 

• Operations on the sets are: 

1. Complement 

2. Union 

3. Intersection 

4. Set Difference 

5. Symmetric Difference 

6. Cartesian product 

 

 

• The set difference A - B of two sets A 
and B is the set of everything in A but 

not in B. 

 

 

 

 

 

 

• Example: 

A = {1, 3, 5, 7, 9} 

B = {1, 2, 3, 4, 5} 

A - B = {7, 9} 

 

 

𝐴 –  𝐵 =  *𝑥 | 𝑥 ∈  𝐴 𝑎𝑛𝑑 𝑥 ∉  𝐵+ 
 =  *𝑥 | 𝑥 ∈  𝐴+  ∩  *𝑥 | 𝑥 ∉  𝐵+ 

 =  𝐴 ∩  𝐵’  

U 
𝐴 𝐵 



Operations on Sets 

• Operations on the sets are: 

1. Complement 

2. Union 

3. Intersection 

4. Set Difference 

5. Symmetric Difference 

6. Cartesian product 

 

 

• The symmetric difference A ⊖ B of 
two sets A and B is the set of 
everything in A but not in B or the set 
of everything in B but not in A. 

 

 

 

 

 

 

• Example: 

A = {1, 3, 5, 7, 9} 

B = {1, 2, 3, 4, 5} 

A ⊖ B = {7, 9, 2, 4} 

 

 

𝐴 ⊖  𝐵 =  (𝐴 –  𝐵) 𝑈 (𝐵 –  𝐴) 

U 
𝐴 
 

 
𝐵 



Operations on Sets 

• Operations on the sets are: 

1. Complement 

2. Union 

3. Intersection 

4. Set Difference 

5. Symmetric Difference 

6. Cartesian product 

 

 

• The Cartesian product A x B of two 

sets A and B is the set of all ordered 

pairs (a, b) where a ∈ A and b ∈ B. 

 

 

 

 

• Example: 

A = {1, 3, 5} 

B = {2, 4} 

A x B = {(1,2), (1,4), (3,2), (3,4), (5,2), 

(5,4)} 

 

 

𝐴 𝑥 𝐵 =  𝑎, 𝑏   𝑎 ∈  𝐴 𝑎𝑛𝑑 𝑏 ∈  𝐵+ 



Set of identities 

• Commutative laws 

 

 

 

• Associative laws 

 

 

 

• Distributive laws 

 

 

 

𝐴 ∩ 𝐵 =  𝐵 ∩ 𝐴 
𝐴 𝑈 𝐵 =  𝐵 𝑈 𝐴  

𝐴 ∩ (𝐵 ∩ 𝐶)  = (𝐴 ∩ 𝐵) ∩ 𝐶 
𝐴 𝑈 (𝐵 𝑈 𝐶)  = (𝐴 𝑈 𝐵) 𝑈 𝐶  

𝐴 𝑈 (𝐵 ∩ 𝐶)  =  (𝐴 𝑈 𝐵) ∩ (𝐴 𝑈 𝐶)  
𝐴 ∩ (𝐵 𝑈 𝐶)  =  (𝐴 ∩ 𝐵) 𝑈 (𝐴 ∩ 𝐶)  



Set of identities 

• Idempotent laws 

 

 

 

• Absorptive laws 

 

 

 

• De Morgan laws 

 

𝐴 𝑈 𝐴 =  𝐴 
𝐴 ∩ 𝐴 =  𝐴  

𝐴 𝑈 (𝐴 ∩ 𝐵)  =  𝐴 
𝐴 ∩ (𝐴 𝑈 𝐵)  =  𝐴  

(𝐴 𝑈 𝐵)’ =  𝐴’ ∩ 𝐵’  
(𝐴 ∩ 𝐵)’ =  𝐴’ 𝑈 𝐵’  



Set of identities 

• Other complements laws 

 

 

 

• Other empty set laws 

 

 

 

• Other universal set laws 

 

(𝐴’)’ =  𝐴 
𝐴 ∩ 𝐴’ =  Φ 
𝐴 𝑈 𝐴’ =  𝑈  

𝐴 𝑈 Φ =  𝐴 
𝐴 ∩ Φ =  Φ  

𝐴 𝑈 𝑈 =  𝑈 
𝐴 ∩ 𝑈 =  𝐴  



Functions  

• Domain: What can go into the function is called domain. 

• Codomain: What may possibly come out from a function is 
codomain. 

• Range: What actually come out from a function is range. The 
range of function is subset of codomain 

• Example: 

𝒇:𝑵𝑵, 𝒇(𝒙) = 𝟐𝒙 + 𝟏 

f(1)=2(1)+1= 3 

f(2)=2(2)+1= 5 

f(3)=2(3)+1= 7 

f(4)=2(4)+1= 9 

• The range of function f(x) = {3, 5, 7, 9} 

 

Range  

1 

2 

3 

4 

3 
2 
1 

4 
5 
6 
7 
8 
9 

10 

Domain  Codomain  

A B 



Relations 



Relations 

• A relation on a set A is defined as subset of 𝐴 × 𝐴. 

• The relation 𝑅  is denoted as aRb  where 𝑎, 𝑏 𝜖 𝐴  and pair 

(𝑎, 𝑏) 𝜖 𝑅. 

• Example: 

𝑁 = *1,2,3+ 

𝑁 × 𝑁 = *(1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1), (3,2), (3,3)+ 

• The ‘=‘ relation on 𝑁 × 𝑁 is : {(1,1), (2,2), (3,3)} 

 where   

 1 = 1 

 2 = 2  

 3 = 3 



Languages 



Language 

• A set of strings all of which are chosen from some Σ∗, where Σ is a 

particular alphabet, is called a language. If Σ is an alphabet, and 

𝐿 ⊆ Σ∗, then 𝐿 is said to be language over alphabet Σ. 

• Language comprises of: 

• Set of characters – Σ 

• Set of strings (words) defined from set of character - Σ∗ 

• Language L is defined from Σ∗, and 𝐿 ⊆ Σ∗ because Σ∗ contains 

many string which may not satisfy the rules of language. 

• Example: 

• Σ = {a, b} 

• Σ∗ = {^, a, b, aa, ab, ba, bb, aaa, aab, aba, abb, baa, …} 

 



Operations over Language 
• Operations over the language are: 

1. Concatenation 

2.  Union 

3.  * (Kleene closure) 

4.  + 

  If 𝐿1, 𝐿2 ⊆ Σ
∗ then concatenation is defined as 

𝐿1𝐿2 = 𝑥𝑦  𝑥 𝜖 𝐿1 𝑎𝑛𝑑 𝑦 𝜖 𝐿2+ 

Example: 

𝐿1 = {hope, fear}  and 𝐿2 = {less, fully} 

 

 

 

 

 

 

 

 

 

hopeless 

𝐿1𝐿2 = {hopeless, hopefully, fearless, fearfully} 



Operations over Language 
• Operations over the language are: 

1. Concatenation 

2.  Union 

3.  * (Kleene closure) 

4.  + 

  If 𝐿1, 𝐿2 ⊆ Σ∗ then union is defined as 

𝐿1 | 𝐿2 = 𝑥  𝑥 𝜖 𝐿1 𝑜𝑟 𝑥 𝜖 𝐿2+ 

Example: 

𝐿1 = {hope, fear}  and 𝐿2 = {less, fully} 

 

 

 

 

 

 

 

 

 

𝐿1 | 𝐿2 = {hope, fear, less, fully} 



Operations over Language 
• Operations over the language are: 

1. Concatenation 

2.  Union 

3.  * (Kleene closure) 

4.  + 

  • If 𝐿 is a set of words then by 𝐿∗ we mean the set of all finite strings 

formed by concatenating words from S, where any word may be 

used as often we like, and where the null string is also included. 

𝐿∗ =  𝐿𝑖
∞

𝑖=0

 

Example: 𝐿 = {ab} 

 

 

 

 

 

𝐿* = {^, ab, abab, ababab, abababab, ….} 



Operations over Language 
• Operations over the language are: 

1. Concatenation 

2.  Union 

3.  * (Kleene closure) 

4.  + 

  • If 𝐿 is a set of words then by 𝐿+ we mean the set of all finite 

strings formed by concatenating words from L, where any word 

may be used as often we like, and where the null string is not 

included. 

𝐿+ =  𝐿𝑖
∞

𝑖=1

 

Example:𝐿 = {ab} 

 

 

 

 

 

𝐿+ = {ab, abab, ababab, abababab, ….} 



Star: A* = { w1 …wk | k ≥ 0 and each wi  A } 

Power Set 

Let A be the set, the set of all subset of set A is called power set of A and is denoted by 2A 

Example : A={1,2,3} 2A = {{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3},{∅}} 

Empty Set  Set Containing no Elements  Example: S={} or {∅} 

Finite and infinite set 

If a set containing finite number of elements  Example : s ={1,2,3,4}, |s| =4 

If a set containing an infinite number of elements Example : Natural numbers 



Star: A* = { w1 …wk | k ≥ 0 and each wi  A } 

Grammars: 
Set of Rules or protocols  

Example A typical rule of English grammar is sentence can consists of a noun phrased 
followed by predicates  

Ex.    SIHI ate Slowly  

Noun Verb 
Adverb 

Rules  

Sentence Noun/Verb/Adverb 

Noun SIHI 

Verb ate 

Adverb Slowly 



Star: A* = { w1 …wk | k ≥ 0 and each wi  A } 

Language  

Each Language consists of Alphabets from which the word, statements etc., can be derived 

Alphabets  An Alphabets  is a finite and non empty set of symbols and is denoted by Σ   

Symbols  A Symbols is an abstract entity  Examples: Letter or Digits 

Letter=A/B/C/D………………../Z/a/b/c/d/……………./z 

Digits=0/1/2/3/…………./9 

Strings  The sequences of symbols from the alphabets(Σ ) Examples: Σ ={a,b,c} 

Empty Strings  Empty string is denoted by (epsilon ) is consists of 0 symbols |  |=0  



Star: A* = { w1 …wk | k ≥ 0 and each wi  A } 

Alphabets and Strings :  

We will use small alphabets  ba,

Strings 

baaabbbaaba

baba

abba

ab

a

abbaw

bbbaaav

abu









Star: A* = { w1 …wk | k ≥ 0 and each wi  A } 

String Operations 

m

n

bbbv

aaaw





21

21





bbbaaa

abba

Concatenation 

mn bbbaaawv  2121 abbabbbaaa

Reveres  

naaaw 21
12aaaw n

R 

ababaaabbb bbbaaababa



Star: A* = { w1 …wk | k ≥ 0 and each wi  A } 

String Length 

naaaw 21

Length: nw 

Examples: 

1

2

4







a

aa

abba
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Recursive Definition of Length 

Example              : 

1a

1 wwawa

4

1111

111

11

1











a

ab

abbabba

For any letter      : 

For any string      : 



43 

Length of Concatenation 

Example:  

vuuv 

853

8

5,

3,









vuuv

aababaabuv

vabaabv

uaabu
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Empty String 

A string with no letters:  
Observations: 0

www 

abbaabbaabba 



Hierarchy of Languages 

1 

D=decidable 

SD = Semidecidable 



Chomsky Hierarchy of Languages 

Languages from “simplest” to “complex” 

Each is a subset of the ones below 

• Regular  

• Context Free 

• Context Sensitive  

• Recursively Enumerable 
 

Can be defined by the type of 

Machine that will recognize it. 
2 Noam Chomsky 



Regular Languages 

A Regular Language is one that can be recognized by a 

Finite State Machine.  

3 

An FSM to accept a*b*: 



Finite Automata(FA)  
or 

 Finite State Machine (FSM) 



Finite Automata 

• A finite automaton, or finite state machine is a 5-
tuple (𝑄, Σ, 𝑞0, 𝐹, 𝛿) where 
– 𝑄 is finite set of states; 
– Σ is finite alphabet of input symbols; 
– 𝑞0 𝜖 𝑄 (initial state); 
– 𝐹 ⊆ 𝑄 (the set of accepting states); 
– 𝛿  is a function from 𝑄 × Σ 𝑡𝑜 𝑄  (the transition 

function). 

• For any element 𝑞 of 𝑄 and any symbol 𝑎 𝜖 Σ, we 
interpret 𝛿(𝑞, 𝑎) as the state to which the FA 
moves, if it is in state 𝑞 and receives the input 𝑎. 
 



Example: Finite Automata 

• 𝑀 = (𝑄, Σ, 𝑞0, 𝐹, 𝛿) 

– 𝑄 = *𝑞0, 𝑞1, 𝑞2+ 

– Σ = *0,1+ 

– 𝑞0 = 𝑞0 

– 𝐹 = *𝑞2+ 

– 𝛿 is defined as  

 

δ Input 

State 𝟎 𝟏 

𝑞0 𝑞1 𝑞0 

𝑞1 𝑞2 𝑞0 

𝑞2 𝑞2 𝑞0 

𝑞0 𝑞1 𝑞2 

1 

0 

1 

0 

0 

1 



Applications of FA 

• Lexical analysis phase of a compiler. 

• Design of digital circuit. 

• String matching. 

• Communication Protocol for information 
exchange. 



Automata Theory & Modern-day 
Applications 

Automata 
Theory &  
Computability 

Compiler 
Design &  
Programming  
Languages  

Computer 
Organization & 
Architecture 

Computation models 
  serial vs.  parallel  
DNA computing, Quantum computing 

 Artificial Intelligence & 
Information Theory 

Algorithm 
Design & 
NP-Hardness 

Scientific 
Computing 
• biological systems 
• speech recognition 
• modeling 
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Finite Automaton (FA or FSM) 

• Informally, a state diagram that comprehensively captures all 
possible states and transitions that a machine can take while 
responding to a stream or sequence of input symbols 

• Recognizer for “Regular Languages” 

 

• Deterministic Finite Automata (DFA or DFSM) 
– The machine can exist in only one state at any given time 

• Non-deterministic Finite Automata (NFA or NDFSM) 
– The machine can exist in multiple states at the same time 



10 

Deterministic Finite Automata - 
Definition 

• A Deterministic Finite Automaton (DFA) consists of: 
– Q ==> a finite set of states 

– ∑ ==> a finite set of input symbols (alphabet) 

– q0 ==> a start state 

– F ==> set of accepting states 

– δ  ==> a transition function, which is a mapping between  

                     Q x ∑ ==> Q 

• A DFA is defined by the 5-tuple:  
– {Q, ∑ , q0,F, δ  } 
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What does a DFA do on reading an 
input string? 

• Input: a word w in ∑* 

• Question: Is w acceptable by the DFA? 

• Steps: 
– Start at the “start state” q0 

– For every input symbol in the sequence w do 
• Compute the next state from the current state, given the current 

input symbol in w and the transition function 

– If after all symbols in w are consumed, the current state is 
one of the accepting states (F) then accept w;  

– Otherwise, reject w. 
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DFA for strings containing 01 

q0 

start 
q1 

0 

Regular expression: (0+1)*01(0+1)* 

1 0,1 0 

1 
q2 

Accepting 
state 

• What if the language allows  
  empty strings? 

• What makes this DFA deterministic? • Q = {q0,q1,q2} 

• ∑ = {0,1} 

• start state = q0  

• F = {q2}  

• Transition table 

q2 q2 *q2 

q2 q1 q1 

q0 q1 q0 

1 0 
st

at
es

 

symbols 



0 

0,1 

0 
0 

1 

1 

1 

0111 111 

11 

1   

The machine accepts a string if the process ends in a double circle 



1. Construct a DFA which accepts set of all strings of 0‟s and 1‟s 

having at least “3 consecutive zeros” 

Minimum string  

L= 000, 

0 0 0 

1000, 

1 

0001, 

1 

0000, 

,0 

01000, 001000, 

1 

1 

000 00 0 

Accepted 

.. … …………. …, 



Continued Example -1 

L= 000, 

0 0 0 

1000, 

1 

0001, 

1 

0000, 

,0 

01000, 001000, 

1 

1 

01000 1000 0 

Accepted 

000 00 

.. … …………. …, 



0 0 0 

1 1 ,0 

1 

1 
Accepted 

Q  = {q0, q1, q2, q3} 

Σ = {0,1} 

 : Q  Σ → Q transition function 

q0  Q is start state 

F  = {q3}  Q accept states 

M = (Q, Σ, , q0, F)  where 

q0 
q1 q2 

q3 

 0 1 

q0 q1 q0 

q1 q2 q0 

q2 q3 q0 

q3 q3 q 
* 

-> 



2. Construct a DFA which accepts set of all strings of 0‟s and 1‟s 

having at least “2 consecutive zeros” 

Minimum string  

L= 00, 

0 0 

100, 

1 

001, 

1 

000, 

,0 

0100, 

1 

0100 100 

Accepted 

.. … …………. …, 

00 
0 



0 0 

1 

1 ,0 

Accepted q0 
q1 

q2 

1 

Q  = {q0, q1, q2} 

Σ = {0,1} 

 : Q  Σ → Q transition function 

q0  Q is start state 

F  = {q2}  Q accept states 

M = (Q, Σ, , q0, F)  where 

 0 1 

q0 q1 q0 

q1 q2 q0 

q2 q2 q2 
* 

-> 



3. Construct a DFA which accepts set of all strings of 0‟s and 1‟s 

ending with the „000‟. 

Minimum string  

L= 000, 

0 0 0 

1000, 

1 

0000, 

0 

01000, 001000, 

1 
1 

000 00 

Accepted 

.. … …………. …, 0001000, 

1 

0 



3. Construct a DFA which accepts set of all strings of 0‟s and 1‟s 

ending with the „000‟. 

Minimum string  

L= 000, 

0 0 0 

1000, 

1 

0000, 

0 

01000, 001000, 

1 
1 

1000 00 

Accepted 

.. … …………. …, 0001000, 

1 

0 000 



3. Continued Example 3 

0 0 0 

1 

1 
1 

Accepted 1 

Q  = {q0, q1, q2, q3} 

Σ = {0,1} 

 : Q  Σ → Q transition function 

q0  Q is start state 

F  = {q3}  Q accept states 

M = (Q, Σ, , q0, F)  where 

 0 1 

->q0 q1 q0 

   q1 q2 q0 

   q2 q3 q0 

  q*3 q3 q3 

q0 
q1 q2 

q3 

0 



4. Construct a DFA which accepts set of all strings of a‟s and b‟s 

“starting with a ending with a” 

Minimum string  

L= aa, 

a a 

aba, 

b 

aaa, 

a 

aaba, aaabbaa, 

b 

aaba aba 

.. … …………. …, 

ba 

b 

a,b 

Dead state/rejecting state 

a 

Accepted 



Continued Example-4 

a a 

b 
a 

b 
b 

a,b Dead state/rejecting state 

Accepted 

q0 
q1 

q2 

q3 

Q  = {q0, q1, q2, q3} 

Σ = {0,1} 

 : Q  Σ → Q transition function 

q0  Q is start state 

F  = {q2}  Q accept states 

M = (Q, Σ, , q0, F)  where 

 a b 

->q0 q1 q3 

   q1 q2 q1 

  q*2 q2 q1 

  q3 q3 q3 



5. Build a FSM with any string that ends in „1‟ over the alphabet or 

(Binary ODD Number) 

Minimum string  

L= 1, 

1 

111, 001, 

1 

101, 

0 

01011 
1011 

.. … …………. …, 

011 

Accepted 

0 

11 
1 



Continued Example 5 

L= 1, 

1 

111, 001, 
1 

101, 

0 

.. … …………. …, 

Accepted 

0 

Q  = {q0, q1} 

Σ = {0,1} 

 : Q  Σ → Q transition function 

q0  Q is start state 

F  = {q1}  Q Accept states 

M = (Q, Σ, , q0, F)  where 

 0 1 

->q0 q0 q1 

   q*1 q0 q1 

q0 
q1 



5. Build a FA with any string that ends in „0‟ over the alphabet or 

(Binary EVEN Number) 

Minimum string  

L= 00, 

0 

10, 010, 

0 

1 

10100 
0100 

.. … …………. …, 

Accepted 

1 

100 
0 

00 



Continued Example  

0 

0 

1 

1 

q0 
q1 

Q  = {q0, q1} 

Σ = {0,1} 

 : Q  Σ → Q transition function 

q0  Q is start state 

F  = {q1}  Q Accept states 

M = (Q, Σ, , q0, F)  where 

 0 1 

->q0 q1 q0 

   q*1 q1 q0 



5. Build a FA that accepts all strings over an alphabet  

Minimum string  

L= a, aaa,  ab, 

a 

.. … …………. …, 

Accepted 

Σ = {a,b} 

 bbbbb, 

,b 

ababa baba   aba ba a 



5. Build a FA with any string that begins with „0‟. 

Minimum string  

L= a, 

a 

aa, ab, 

a 

.. … …………. …, 

Accepted 

b 

a , b 

,b 



7.Obtain a DFA to accept string f 0‟s and 1‟s having a substring „00‟  

Minimum string  

L= 00, 

0 

000, 001, 

0 

.. … …………. …, 

Accepted 

1 

,1 

0 

100, 0100, 

1 



𝐴 𝐵 

𝐶 

𝐷 

0 

1 

0 

1 

0 

1 

0 

1 

Minimum string  

L= 00, 01, 000, 1000, 0001, 00101 …, 

Example: The string with next to last symbol as 0. 

01101 



𝐴 𝐵 𝐶 
1 

0 1 

0 

0 

1 

Minimum string  

L= 10, 010, 110, 1010, 10010, 101010 …, 

Example: The strings ending with 10. 

0001110 



The string ending in 10 or 11 

A B 

C 

D 

1 

1 

0 

1 

0 

0 

0 

1 



The string corresponding to Regular 
expression {00}*{11}* 

B 

C A E 
1 

0 

D 
1 

1 

1 

0 
0 

0 

0,1 



Construct a DFSM for accepting o’s and 1’s, 
a. String consisting ODD Number of 0’s and 1’s. 
b. String consisting EVEN Number of 0’s and 1’s. 
c. String consisting ODD Number of 0’s and Even Number of 1’s. 
d. String consisting ODD Number of 1’s and Even number 1’s. 
 
 

odd 1 
even 0 

odd 0 
odd 1 

odd 0 
even 1 

even 1 
even 0 

  

0 0 0 0 

1 

1 

1 

1 



FA Examples 

• (a+b)*baaa 

A C 

E 

B 

a 

D 

a 

a 

a 

a 

b 

b 

b 

b b 



-Non-Deterministic Finite State 

Automata(Epsilon-NFA) 


• We extend the class of NFAs by allowing instantaneous (ε) 

transitions:  

1. The automaton may be allowed to change its state without 

reading the input symbol.  

2. In diagrams, such transitions are depicted by labeling the 

appropriate arcs with ε.  

3. Note that this does not mean that ε has become an input symbol.  

On the contrary, we assume that the symbol ε does not belong to 

any alphabet.  

NFA with ∈ move: If any FSM contains ε transaction or move, the 
finite automata is called NFA with ∈ move. 



Example 

• { an | n is even or divisible by 3 } 

 



Formal Definition of        -NDFSM 

  
 FqQM ,,,, 0

:Q

:

:0q

:F

Set of states,  i.e.  210 ,, qqq

: Input aplhabet, i.e.  ba,

Transition function 

Initial state 

Accepting states 

  QQx 2: 



Note ε is never a member of  



ε-NDFSM 

• ε -NFAs add a convenient feature but (in a sense) they bring us 

nothing new: they do not extend the class of languages that can 

be represented.  Both NFAs and ε-NFAs  recognize exactly the 

same languages. 

 

 

ε-Closure 



• ε-closure of a state 
The ε-closure of the state q, denoted ECLOSE(q), is the set that 
contains q, together with all states that can be reached starting at q 
by following only ε-transitions. 

ε-Closure 

ECLOSE(P) ={P,Q,R,S} 
ECLOSE(R)={R,S} 
ECLOSE(x)={x} for the remaining 5 states 
                                        {Q,Q1,R1,R2,R2}  
  

In the above example: 



Applying Definitions of ECLOSE(𝑆) 

  𝑞0 

 𝑠 𝑝 

𝑡 𝑣 

𝑤 

𝑟 

𝑢 

ε 

ε 

ε ε 

ε 

0 

0 

0 0 

0 

1 

1 

1 

ECLOSE 𝑞0 =  * 𝑞0, 𝑝, 𝑡  + 



ECLOSE 𝑠 = 𝑤, 𝑝, 𝑡  +  * 𝑞0, 𝑠, 

  𝑞0 

 𝑠 𝑝 

𝑡 𝑣 

𝑤 

𝑟 

𝑢 

ε 

ε 

ε ε 

ε 

0 

0 

0 0 

0 

1 

1 

1 

Applying Definitions of ECLOSE(𝑆) 



Applying Definition of 𝛿∗ 

𝛿∗ 𝑞0, ε  
 = *𝑞0, 𝑝, 𝑡+ 
 = ECLOSE(*𝑞0+) 

  𝑞0 

 𝑠 𝑝 

𝑡 𝑣 

𝑤 

𝑟 

𝑢 

ε 

ε 

ε ε 

ε 

0 

0 

0 0 

0 

1 

1 

1 



NFA -ε to DFA 

NFA - ε NFA  DFA  



Conversion from NFA with ε to DFA 

 Steps for converting NFA with ε to DFA: 

Step 1: We will take the ε-closure for the starting state of NFA as a starting 

state of DFA. 

Step 2: Find the states for each input symbol that can be traversed from 

the present. That means the union of transition value and their closures for 

each state of NFA present in the current state of DFA. 

Step 3: If we found a new state, take it as current state and repeat step 2. 

Step 4: Repeat Step 2 and Step 3 until there is no new state present in the 

transition table of DFA. 

Step 5: Mark the states of DFA as a final state which contains the final state 

of NFA. 



Example 1: Convert the NFA with ε into its equivalent DFA. 

Solution: 
Let us obtain ε-closure of each state. 

ε-closure {q0} = {q0, q1, q2}   
ε-closure {q1} = {q1}   
ε-closure {q2} = {q2}   
ε-closure {q3} = {q3}   
ε-closure {q4} = {q4}   

Now, let ε-closure {q0} = {q0, q1, q2} be state A. Hence 

δ'(A, 0) = ε-closure {δ((q0, q1, q2), 0)}                 
            = ε-closure {δ(q0, 0) ∪ δ(q1, 0) ∪ δ(q2, 0) } 

            = ε-closure {q3} 
            = {q3}           call it as state B.  

δ'(A, 1) = ε-closure {δ((q0, q1, q2), 1) }            
            = ε-closure {δ((q0, 1) ∪ δ(q1, 1) ∪ δ(q2, 1) }          

            = ε-closure {q3}    
            = {q3} = Same as B then Rewrite State B 



Example 1: Convert the NFA with ε into its equivalent DFA. 

Solution: 
Let us obtain ε-closure of each state. 

δ'(C, 0)  = ε-closure {δ(q4, 0) }   
             = ϕ   New state D  
δ'(C, 1)  = ε-closure {δ(q4, 1) }   
             = ϕ   state D  

δ'(B, 0) = ε-closure {δ(q3, 0)} 
            = ϕ  

δ'(B, 1) = ε-closure {δ(q3, 1) } 
            = ε-closure{q4}  
            = {q4}        New state C  

For state C: 

The DFA will be, 

A CB
11,0

0 1,0

M = { Q, ∑, δ, q0, F}. 

Q ={A,B, C, D }. 

∑ = { 0,1}. 

q0 = {q0}. 

F = { C}. 

Transitional Table 

 0 1 

A B B 

B 

C* 

D 

D 

D 

D 

C 

D 

D 

a, b 

D



Example 2: Convert the given NFA into its equivalent DFA. 

Solution:  
Let us obtain the ε-closure of each state. 

ε-closure(q0) = {q0, q1, q2}   
ε-closure(q1) = {q1, q2}   
ε-closure(q2) = {q2}   

Now we will obtain δ' transition.  
Let ε-closure(q0) = {q0, q1, q2} call it as state A. 

δ'(A, 0) = ε-closure{δ((q0, q1, q2), 0)}                
            = ε-closure{δ(q0, 0) ∪ δ(q1, 0) ∪ δ(q2,0)} 

            = ε-closure{q0}           
            = {q0, q1, q2} Same as state A  

δ'(A, 1) = ε-closure{δ((q0, q1, q2), 1)}               
            = ε-closure{δ(q0, 1) ∪ δ(q1, 1) ∪ δ(q2,1)} 

            = ε-closure{q1}      
            = {q1, q2}         call it as state B  

δ'(A, 2) = ε-closure{δ((q0, q1, q2), 2)}               
            = ε-closure{δ(q0, 2) ∪ δ(q1, 2) ∪ δ(q2,2)} 

            = ε-closure{q2}         
            = {q2}         call it state C  



Example 2: Convert the given NFA into its equivalent DFA. 
Solution: Continue…. 

Now we will find the transitions on states B and C for each input. 
Hence 

δ'(B, 0) = ε-closure{δ((q1, q2), 0)}  
            = ε-closure{δ(q1, 0) ∪ δ(q2,0)} 
            = ε-closure{ϕ}               
            = ϕ ->State D 

δ'(B, 1) = ε-closure{δ((q1, q2), 1)}              
            = ε-closure{δ(q1, 1) ∪ δ(q2,1)} 

            = ε-closure{q1}               
            = {q1, q2}         i.e. state B itself  

δ'(B, 2) = ε-closure{δ((q1, q2), 2)}             
            = ε-closure{δ(q1, 2) ∪ δ(q2, 2)}              

            = ε-closure{q2}    
            = {q2}         i.e. state C itself  



Example 2: Convert the given NFA into its equivalent DFA. 
Solution: Continue…. 

Now we will obtain transitions for C: 

δ'(C, 0) = ε-closure{δ(q2, 0)}           
            = ε-closure{ϕ}      
            = ϕ -> D 

δ'(C, 1) = ε-closure{δ(q2, 1)}              
            = ε-closure{ϕ}              
            = ϕ ->D 

δ'(C, 2) = ε-closure{δ(q2, 2)}                
            = {q2}  

Hence the DFA is 

As A = {q0, q1, q2} in which final state q2 lies hence 
A is final state.  
B = {q1, q2} in which the state q2 lies hence B is also 
final state.  
C = {q2}, the state q2 lies hence C is also a final 
state.. 

A

C

B
2

1
0

1,0

M = { Q, ∑, δ, q0, F}. 

Q ={A,B, C, D }. 

∑ = { 0,1}. 

q0 = {q0}. 

F = { C}. 

Transitional Table 

 0 1 

A* B B 

B* 

C* 

D 

D 

D 

D 

C 

D 

D 

0, 1 

D

0 1 

2 

2



3: Convert the given NFA into its equivalent DFA   

ε-closure{0} ={0,1,2,4,7}  ->A 
δ(A, a)= {3,8}=ε-closure{3,8}={3,6,7,1,2,4,8}=>{1,2,3,4,6,7,8}->B   
δ(A, b)= {5}=ε-closure{5}={5,6,7,1,2,4}=>{1,2,4,5,6,7}->C  

δ(B, a)= {3,8}=ε-closure{3,8}={3,6,7,1,2,4,8}=>{1,2,3,4,6,7,8}->same as B   
δ(B, b)= {5,9}=ε-closure{5,9}={1,2,4,5,6,7,9}->D  

δ(C, a)= {3,8}=ε-closure{3,8}={3,6,7,1,2,4,8}=>{1,2,3,4,6,7,8}->same as B   
δ(C, b)= {5}=ε-closure{5}={5,6,7,1,2,4}=>{1,2,4,5,6,7}-> same as C  

δ(D, a)= {3,8}=ε-closure{3,8}={3,6,7,1,2,4,8}=>{1,2,3,4,6,7,8}->same as B   
δ(D, b)= {5}=ε-closure{5,10}={5,6,7,1,2,4,10}=>{1,2,4,5,6,7,10}-> E  

δ(E, a)= {3,8}=ε-closure{3,8}={3,6,7,1,2,4,8}=>{1,2,3,4,6,7,8}->same as B   
δ(E, b)= {5}=ε-closure{5}={5,6,7,1,2,4}=>{1,2,4,5,6,7}-> same as C  



3: Convert the given NFA into its equivalent DFA   

Now Construct the DFA Transitional Table 

 a b 

->A B C    

   B 

   C 

   D 

   E* 

B 

B 

B 

B 

D    

C    

E  

C   

A

C

B
a

a

b

D
b 

a 

b

E
b

b

a

a



Conversion from NFA- ε to DFA 

  𝑞 𝛿 𝑞, ε  𝛿 𝑞, 0  𝛿 𝑞, 1  

A {B} {A} 𝜙 

B {D} {C} 𝜙 

C 𝜙 𝜙 {B} 

D 𝜙 {D} 𝜙 

A B D 

C 

ε 

0 

ε 

0 0 

1 



𝛿∗ 𝐴, ε  

𝛿∗ 𝐴, 0  
A D 

0 

B 

= ε𝑐𝑙𝑠(𝛿 𝐴, 0 ∪ 𝛿 𝐵, 0 ∪ 𝛿 𝐷, 0 ) 

= ε𝑐𝑙𝑠( 𝐴, 𝐶, 𝐷 ) 

= *𝐴, 𝐵, 𝐶, 𝐷+ 

C 

0 

0 

0 

= 𝐸𝐶𝐿𝑂𝑆𝐸 𝐴 = *𝐴, 𝐵, 𝐷+ 

Conversion from NFA- ε to DFA 

Step 1: To convert NFA - ε to NFA 

𝑞 𝛿∗ 𝑞, 0  𝛿∗ 𝑞, 1  

𝐴  *𝐴, 𝐵, 𝐶, 𝐷+ 𝜙 

𝐵 *𝐶, 𝐷+ 𝜙 

𝐶 𝜙 *𝐵, 𝐷+ 

𝐷 *𝐷+ 𝜙 



Conversion from NFA- ε to DFA 

A D 

0 

B 

= 𝜙 

C 

0 

0 

0 

𝛿∗ 𝐴, 1  = ε𝑐𝑙𝑠 𝛿 𝐴, 1 ∪ 𝛿 𝐵, 1 ∪ 𝛿 𝐷, 1  

= ε𝑐𝑙𝑠(𝜙) 

𝑞 𝛿∗ 𝑞, 0  𝛿∗ 𝑞, 1  

𝐴  *𝐴, 𝐵, 𝐶, 𝐷+ 𝜙 

𝐵 *𝐶, 𝐷+ 𝜙 

𝐶 𝜙 *𝐵, 𝐷+ 

𝐷 *𝐷+ 𝜙 



𝛿∗ 𝐵, ε  

𝛿∗ 𝐵, 0  = Λ(𝛿 𝐵, 0 ∪ 𝛿 𝐷, 0 ) 

= Λ( 𝐶, 𝐷 ) 

= *𝐶, 𝐷+ 

= ε𝑐𝑙𝑠 𝐵 = *𝐵, 𝐷+ 

A D 

0 

B 

C 

0 
0 

0 

0 

0 

Conversion from NFA- ε to DFA 

𝑞 𝛿∗ 𝑞, 0  𝛿∗ 𝑞, 1  

𝐴  *𝐴, 𝐵, 𝐶, 𝐷+ 𝜙 

𝐵 *𝐶, 𝐷+ 𝜙 

𝐶 𝜙 *𝐵, 𝐷+ 

𝐷 *𝐷+ 𝜙 



Conversion from NFA- ε to DFA 

= 𝜙 

𝛿∗ 𝐵, 1  = ε𝑐𝑙𝑠(𝛿 𝐵, 1 ∪ 𝛿 𝐷, 1 ) 

= ε𝑐𝑙𝑠(𝜙) 

A D 

0 

B 

C 

0 
0 

0 

0 

0 

𝑞 𝛿∗ 𝑞, 0  𝛿∗ 𝑞, 1  

𝐴  *𝐴, 𝐵, 𝐶, 𝐷+ 𝜙 

𝐵 *𝐶, 𝐷+ 𝜙 

𝐶 𝜙 *𝐵, 𝐷+ 

𝐷 *𝐷+ 𝜙 



𝛿∗ 𝐶, ε  

𝛿∗ 𝐶, 0  = ε𝑐𝑙𝑠(𝛿 𝐶, 0 ) 

= ε𝑐𝑙𝑠(𝜙) 

= 𝜙 

= ε𝑐𝑙𝑠 𝐶 = *𝐶+ 

A D 

0 

B 

C 

0 
0 

0 

0 

0 

𝑞 𝛿∗ 𝑞, 0  𝛿∗ 𝑞, 1  

𝐴  *𝐴, 𝐵, 𝐶, 𝐷+ 𝜙 

𝐵 *𝐶, 𝐷+ 𝜙 

𝐶 𝜙 *𝐵, 𝐷+ 

𝐷 *𝐷+ 𝜙 

Conversion from NFA- ε to DFA 



= *𝐵, 𝐷+ 

𝛿∗ 𝐶, 1  = ε𝑐𝑙𝑠(𝛿 𝐶, 1 ) 

= ε𝑐𝑙𝑠(*𝐵+) 

A D 

0 

B 

C 

0 
0 

0 

0 

0 

1 1 

𝑞 𝛿∗ 𝑞, 0  𝛿∗ 𝑞, 1  

𝐴  *𝐴, 𝐵, 𝐶, 𝐷+ 𝜙 

𝐵 *𝐶, 𝐷+ 𝜙 

𝐶 𝜙 *𝐵, 𝐷+ 

𝐷 *𝐷+ 𝜙 

Conversion from NFA- ε to DFA 



𝛿∗ 𝐷, ε  

𝛿∗ 𝐷, 0  = ε𝑐𝑙𝑠(𝛿 𝐷, 0 ) 

= ε𝑐𝑙𝑠(*𝐷+) 

= *𝐷+ 

= Λ 𝐷 = *𝐷+ 

A D 

0 

B 

C 

0 
0 

0 

0 

0 

1 1 
0 

𝑞 𝛿∗ 𝑞, 0  𝛿∗ 𝑞, 1  

𝐴  *𝐴, 𝐵, 𝐶, 𝐷+ 𝜙 

𝐵 *𝐶, 𝐷+ 𝜙 

𝐶 𝜙 *𝐵, 𝐷+ 

𝐷 *𝐷+ 𝜙 

Conversion from NFA- ε to DFA 



= 𝜙 

𝛿∗ 𝐷, 1  = ε(𝛿 𝐷, 1 ) 

= ε(𝜙) 

A D 

0 

B 

C 

0 
0 

0 

0 

0 

1 1 
0 

𝑞 𝛿∗ 𝑞, 0  𝛿∗ 𝑞, 1  

𝐴  *𝐴, 𝐵, 𝐶, 𝐷+ 𝜙 

𝐵 *𝐶, 𝐷+ 𝜙 

𝐶 𝜙 *𝐵, 𝐷+ 

𝐷 *𝐷+ 𝜙 Resulting NFA 

Accepting 
State 

𝐴 ∪ 𝑞0      if ε𝑐𝑙𝑠 𝑞0 ∩ 𝐴 ≠ 𝜙 in 𝑀 
𝐴                 otherwise 

= { 

Conversion from NFA- ε to DFA 





𝛿 *𝐴+, 0 =   *𝐴, 𝐵, 𝐶, 𝐷+ 

𝛿 *𝐴+, 1 =   𝜙 

𝛿 *𝐴, 𝐵, 𝐶, 𝐷+, 0 = (𝛿 𝐴, 0  ∪ 𝛿 𝐵, 0  ∪ 𝛿 𝐶, 0  ∪ 𝛿 𝐷, 0)  

=   *𝐴, 𝐵, 𝐶, 𝐷+ ∪ {C,D} ∪ {𝜙} ∪ {D} = *𝐴, 𝐵, 𝐶, 𝐷+  
 𝛿 *𝐴, 𝐵, 𝐶, 𝐷+, 1 = (𝛿 𝐴, 1  ∪ 𝛿 𝐵, 1  ∪ 𝛿 𝐶, 1  ∪ 𝛿 𝐷, 1)  

=   *𝐵, 𝐷+ 

𝛿 *𝐵, 𝐷+, 0 = (𝛿 𝐵, 0  ∪ 𝛿 𝐷, 0)  

=   *𝐶, 𝐷+ 

𝛿 *𝐵, 𝐷+, 1 = (𝛿 𝐵, 1  ∪ 𝛿 𝐷, 1)  

= 𝜙 A 

CD 

ABCD 

0 

BD 

0 

1 
0 

Conversion from NFA- ε to DFA 

Step 2: To convert NFA to FA 

𝑞 𝛿∗ 𝑞, 0  𝛿∗ 𝑞, 1  

𝐴  *𝐴, 𝐵, 𝐶, 𝐷+ 𝜙 

𝐵 *𝐶, 𝐷+ 𝜙 

𝐶 𝜙 *𝐵, 𝐷+ 

𝐷 *𝐷+ 𝜙 



Conversion from NFA- ε to DFA 

A CD 

0 

D 

ABCD 

0 

0 

0 

0 

1 

𝛿 *𝐶, 𝐷+, 0 = (𝛿 𝐶, 0  ∪ 𝛿 𝐷, 0)  

=   *𝐷+ 

𝛿 *𝐶, 𝐷+, 1 = (𝛿 𝐶, 1  ∪ 𝛿 𝐷, 1)  

=   *𝐵, 𝐷+ 

𝛿 *𝐷+, 0 =   *𝐷+ 

𝛿 *𝐷+, 1 =   𝜙 

BD 

1 

𝑞 𝛿∗ 𝑞, 0  𝛿∗ 𝑞, 1  

𝐴  *𝐴, 𝐵, 𝐶, 𝐷+ 𝜙 

𝐵 *𝐶, 𝐷+ 𝜙 

𝐶 𝜙 *𝐵, 𝐷+ 

𝐷 *𝐷+ 𝜙 

DFA 



Difference between DFA and NFA  

SR.NO. DFA NFA 

1 
DFA stands for Deterministic Finite 

Automata. 

NFA stands for Nondeterministic Finite 

Automata. 

2 

For each symbolic representation of the 

alphabet, there is only one state transition 

in DFA. 

No need to specify how does the NFA react 

according to some symbol. 

3 DFA cannot use Empty String transition. NFA can use Empty String transition. 

4 DFA can be understood as one machine. 
NFA can be understood as multiple little 

machines computing at the same time. 

5 
In DFA, the next possible state is distinctly 

set. 

In NFA, each pair of state and input symbol 

can have many possible next states. 

6 DFA is more difficult to construct. NFA is easier to construct. 

7 

DFA rejects the string in case it terminates 

in a state that is different from the 

accepting state. 

NFA rejects the string in the event of all 

branches dying or refusing the string. 

8 
Time needed for executing an input string 

is less. 

Time needed for executing an input string 

is more. 

9 All DFA are NFA. Not all NFA are DFA. 

10 DFA requires more space. NFA requires less space then DFA. 



Converting NDFSM to DFSM 

1 



Steps for converting NDFSM to DFSM 

• Step 1: Initially Q' = ϕ 

 

• Step 2: Add q0 of NFA to Q'. Then find the transitions from 

this start state. 
 

• Step 3: In Q', find the possible set of states for each input 

symbol. If this set of states is not in Q', then add it to Q'. 

 

• Step 4: In DFA, the final state will be all the states which 

contain F(final states of NFA) 
2 



Step1: The start state of NDFSM is the start state of DFSM. 

𝛿 𝑞, 𝑎  Step2: if        ={q1,q2,q3,………………qn} is the transitions 

defined for NDFSM, then  [q1,q2,q3,………….qn]is a single state 

of in DFSM from q on input symbol a.  

Step3: [q1,q2,q3,……………..qn] is the final state of DFSM if 

[q1,q2,q3,…………qn] contains a final state of NDFSM 

Convert the given NDFSM to DFSM 



Example 1: Conversion from NFA to FA 

1 

3 

4 

2 

b 

a 

a 

b 

b 

a 

𝑞 𝛿 𝑞, 𝑎  𝛿 𝑞, 𝑏  

1 {2,3} {4} 

2 {𝜙} {4} 

3 {4} {3} 

4 {𝜙} *𝜙} 

NDFSM 

Transition Table 



Example 1: Conversion from NFA to FA 

𝛿1 1, 𝑎 =   *2,3+ 

𝛿1 1, 𝑏 =   *4+ 

𝛿1 2,3 , 𝑎 =   𝛿 2, 𝑎  ∪ 𝛿(3, 𝑎) 
=   *4+ 

𝛿1 2,3 , 𝑏 =   𝛿 2, 𝑏  ∪ 𝛿(3, 𝑏) 
=   *3,4+ 

𝛿1(4, 𝑎) =   *∅+ 

𝛿1(4, 𝑏) =   *∅+ 
1 3,4 

b 
2,3 

4 

b 

a 

a 



Example 1: Conversion from NFA to FA 
𝛿1 *3,4+, 𝑎 = 𝛿 3, 𝑎  ∪ 𝛿(4, 𝑎) 

𝛿1 3,4 , 𝑏 =   𝛿 3, 𝑏  ∪ 𝛿(4, 𝑏) 

=   *3+ 

𝛿1(3, 𝑎) =   *4+ 

𝛿1(3, 𝑏) =   *3+ 

=   *4+ 

1 

3 

3,4 
b 

2,3 

4 

b 

b 

b 

a 

a a 

a 



Ex-2:Convert the given NDFSM to DFSM 

𝑞 𝛿 𝑞, 0  𝛿 𝑞, 1  

→1 {1} {2} 

2 {2,3} {2} 

3* {3} {2,3} 

Transition Table 

1 3 2 
0 1 

NDFSM 

0 
0,1 

1 

0,1 



Ex-2: Conversion from NFA to FA 
𝛿1 1,0 =   *1+ 

𝛿1 1,1 =   *2+ 

𝛿1 2,0 =  *2,3 + 

 
𝛿1 2,1 = {2} 

𝛿1(*2,3 + , 0) = 𝛿 2,0  ∪ 𝛿(3,0) 

1 2,3 

2 

1 

0 

1 3 2 
0 1 

NDFSM 

0 
0,1 

1 

0,1 

0 

1 

0,1 

=   *2,3+ 

𝛿1(*2,3 + , 1) = 𝛿 2,1  ∪ 𝛿(3,1) 
=   *2,3+ 

DFSM 



Ex- 3: Conversion from NFA to DFA 

δ Input 

State 0 1 

->𝑞0 *𝑞0, 𝑞1+ {𝑞1+ 

∗ 𝑞1 {𝜙} *𝑞0, 𝑞1+ 



Ex- 3: Conversion from NFA to DFA 

𝑞0 
,𝑞0,q1] 

𝑞1 

0 

0, 1 

 1 1 

  

Now we will obtain δ' transition for state q0. 
1.δ'([q0], 0) = {q0, q1}   
                  = [q0, q1]  (new state generated)  
  
δ'([q0], 1) = {q1} = [q1]   

The δ' transition for state q1 is obtained as: 
2. δ'([q1], 0) = ϕ   

    δ'([q1], 1) = [q0, q1]   

Now we will obtain δ' transition on [q0, q1]. 
3.δ'([q0, q1], 0) = δ(q0, 0) ∪ δ(q1, 0)   
                        = {q0, q1} ∪ ϕ   

                        = {q0, q1}   
                        = [q0, q1]   

Similarly, 
4.δ'([q0, q1], 1) = δ(q0, 1) ∪ δ(q1, 1)   
                        = {q1} ∪ {q0, q1}   

                        = {q0, q1}   
                        = [q0, q1]   

  



Ex- 3: Conversion from NFA to DFA 
As in the given NFA, q1 is a final state, then in DFA wherever, q1 exists that 
state becomes a final state. Hence in the DFA, final states are [q1] and  
[q0, q1]. Therefore set of final states F = {[q1], [q0, q1]}. 

State 0 1 

→[q0] [q0, q1] [q1] 

*[q1] ϕ [q0, q1] 

*[q0, q1] [q0, q1] [q0, q1] 

The transition table for the constructed DFA will be: 



Ex- 4: Conversion from NFA to DFA 

δ Input 

State 0 1 

𝑞0 *𝑞𝑜+ *𝑞0, 𝑞1+ 

𝑞1 *𝑞2+ *𝑞2+ 

𝑞2 *𝑞3+ *𝑞3+ 

𝑞0 𝑞1 

𝑞3 ∅ ∅ 

𝑞2 𝑞3 
1 

0, 1 

0, 1 0, 1 
  



Ex- 4: Conversion from NFA to DFA 

𝑞0 

0 

𝛿1 *𝑞0+, 0 = *𝑞0+ 

𝛿1 *𝑞0+, 1 = *𝑞0, 𝑞1+ 

𝛿1 *𝑞0, 𝑞1+, 0 = 𝛿 𝑞0 , 0 ∪ 𝛿 𝑞1 , 0 = 𝑞0 ∪ 𝑞2 = *𝑞0, 𝑞2+ 

𝛿1 *𝑞0, 𝑞1+, 1 = 𝛿 𝑞0 , 1 ∪ 𝛿 𝑞1 , 1 = 𝑞0, 𝑞1 ∪ 𝑞2 = *𝑞0, 𝑞1, 𝑞2+ 

𝛿1 *𝑞0, 𝑞2+, 0 = 𝛿 𝑞0 , 0 ∪ 𝛿 𝑞2 , 0 = 𝑞0 ∪ 𝑞3 = *𝑞0, 𝑞3+ 

𝛿1 *𝑞0, 𝑞2+, 1 = 𝛿 𝑞0 , 1 ∪ 𝛿 𝑞2 , 1 = 𝑞0, 𝑞1 ∪ 𝑞3 = *𝑞0, 𝑞1, 𝑞3+ 

𝑞0𝑞1 
1 

𝑞0𝑞2 

0 

𝑞0𝑞1𝑞2 

1 

𝑞0𝑞3 
0 

𝑞0𝑞1𝑞3 

1 



Ex- 4: Conversion from NFA to DFA 

𝑞0 

0 

𝛿1 *𝑞0, 𝑞3+, 0 = 𝛿 𝑞0 , 0 ∪ 𝛿 𝑞3 , 0 =  *𝑞0+ 

𝑞0𝑞1 
1 

𝑞0𝑞2 

0 

𝑞0𝑞1𝑞2 
1 

𝑞0𝑞3 

0 

𝑞0𝑞1𝑞3 

1 

𝛿1 *𝑞0, 𝑞3+, 1 = 𝛿 𝑞0 , 1 ∪ 𝛿 𝑞3 , 1 =  *𝑞0, 𝑞1+ 

0 

1 

𝛿1 *𝑞0, 𝑞1, 𝑞2+, 0 = 𝛿 𝑞0 , 0 ∪ 𝛿 𝑞1 , 0 ∪ 𝛿 𝑞2 , 0 =  *𝑞0, 𝑞2, 𝑞3+ 

𝛿1 *𝑞0, 𝑞1, 𝑞2+, 1 = 𝛿 𝑞0 , 1 ∪ 𝛿 𝑞1 , 1 ∪ 𝛿 𝑞2 , 1 =  *𝑞0, 𝑞1, 𝑞2, 𝑞3+ 

𝑞0𝑞1𝑞2𝑞3 

𝑞0𝑞2𝑞3 0 

1 



Ex 4: Conversion from NFA to DFA 

𝑞0 

0 

𝛿1 *𝑞0, 𝑞2, 𝑞3+, 0 = 𝛿 𝑞0 , 0 ∪ 𝛿 𝑞2 , 0 ∪ 𝛿 𝑞3 , 0 =  *𝑞0, 𝑞3+ 

𝑞0𝑞1 
1 

𝑞0𝑞2 

0 

𝑞0𝑞1𝑞2 
1 

𝑞0𝑞3 

0 

𝑞0𝑞1𝑞3 

1 

𝛿1 *𝑞0, 𝑞2, 𝑞3+, 1 = 𝛿 𝑞0 , 1 ∪ 𝛿 𝑞2 , 1 ∪ 𝛿 𝑞3 , 1 =  *𝑞0, 𝑞1, 𝑞3+ 

0 

1 

𝛿1 *𝑞0, 𝑞1, 𝑞3+, 0 = 𝛿 𝑞0 , 0 ∪ 𝛿 𝑞1 , 0 ∪ 𝛿 𝑞3 , 0 =  *𝑞0, 𝑞2+ 

𝛿1 *𝑞0, 𝑞1, 𝑞3+, 1 = 𝛿 𝑞0 , 1 ∪ 𝛿 𝑞1 , 1 ∪ 𝛿 𝑞3 , 1 =  *𝑞0, 𝑞1, 𝑞2+ 

𝑞0𝑞1𝑞2𝑞3 

𝑞0𝑞2𝑞3 0 

1 

0 

1 

0 

1 𝑞0 𝑞0𝑞1 

𝑞0𝑞2 

𝑞0𝑞1𝑞2 



𝑞0 

0 

𝑞0𝑞1 
1 

𝑞0𝑞2 

0 

𝑞0𝑞1𝑞2 
1 

𝑞0𝑞3 

0 

𝑞0𝑞1𝑞3 

1 

0 

1 

𝛿1 *𝑞0, 𝑞1, 𝑞2, 𝑞3+, 0 = 𝛿 𝑞0 , 0 ∪ 𝛿 𝑞1 , 0 ∪ 𝛿 𝑞2 , 0 ∪ 𝛿 𝑞3 , 0
=  *𝑞0, 𝑞2, 𝑞3+ 

𝛿1 *𝑞0, 𝑞1, 𝑞2, 𝑞3+, 1 = 𝛿 𝑞0 , 1 ∪ 𝛿 𝑞1 , 1 ∪ 𝛿 𝑞2 , 1 ∪ 𝛿 𝑞3 , 1
=  *𝑞0, 𝑞1, 𝑞2, 𝑞3+ 

𝑞0𝑞1𝑞2𝑞3 

𝑞0𝑞2𝑞3 0 

1 

0 

1 

0 

1 

0 1 

• As now no new states are 
obtained, the process 
stops and we need to 
define the accepting 
states.  

• To define accepting states, 
the states which contain 
the accepting states of 
NFA will be accepting 
states of final FA. 

Ex 4: Conversion from NFA to DFA 



State Minimization 



Minimizing a DFA 

 To minimize a DFA is to find an equivalent DFA that 

has the least possible number of states. 

 If the DFA is going to be used to write a program 

(e.g., a compiler) or to design hardware, then there 

may be a significant benefit in minimizing it before 

implementing it. 



Minimizing a DFA 

 The problem is to determine which states are 

distinguishable and which are indistinguishable. 

 To minimize a DFA, we want to identify its 

equivalence classes of indistinguishable states and 

replace them with single states. 



Minimizing a DFA by Table filling Method 

 A pair of  states (p , q) is said to be distinguishes, if there 

is a string w such that, either  

 δ(p, w) F &  δ(q, w ) ∉ F 

                    OR 

δ(p, w) ∉ F &  δ(q, w )  F, then (p,q) are 

distinguishes states 
 

 



Minimizing a DFA by Table filling Method 

 A pair of  states (p , q) is said to be Indistinguishable, if 

there is a string w such that, either  

 δ(p, w) F &  δ(q, w )  F 

                    OR 

δ(p, w)  Q-F &  δ(q, w )  Q-F, then (p,q) are 

Indistinguishable states 
 

 



Rules 

1. Basis: for each p in Q-F & q in F mark (p,q) 

2. Induction steps: for any pair (p,q), if there is some 

input ‘a’ such that  δ(p, a) , δ(q, a) is mark, then 

mark (p,q) . 

3. Repeat step2 until no more pair can be marked.  



1. Minimize the following DFA 

Transitional Table 

 a b 

->A B C    

   B 

   C 

   D 

   E* 

B 

B 

B 

B 

D    

C    

E  

C   



B 

C 

D 

E 

A B 
C D 

Solutions  

Table   

Pairs of states 
(A,B) (A,C) (A,D) (A,E) 

(B,C) (B,D) (B,E) 

(C,D) (C,E) 

(D,E) 

x0 x0 x0 x0 

x1 
x1 x1 

(A,B) (C,D) (B,B) 
a b 

(A,C) (C,C) (B,B) a b 

(A,D) (C,E) (B,B) a b 

(B,C) (D,C) (B,B) a b 

(B,D) (D,E) (B,B) a b 

(C,D) (C,E) (B,B) a b 

Repeat step 2 for 
remaining pair of state 

Basis Rule 





B 

C 

D 

E 

A B 
C D 

Solutions  

Table   
Pairs of states 

(A,B) (A,C) 

(B,C) 

x0 x0 x0 x0 

x1 
x1 x1 

x2 

x2 

(A,B) (C,D) (B,B) a b 

(A,C) (C,C) (B,B) a b 

(B,C) (D,C) (B,B) a b 

Repeat step 2 for 
remaining pair of state 

(A,C) (C,C) (B,B) a b 

No more pair of states 
can be marked, then 
stop 

Therefore, states of the 
reduced DFA is  {(Ac),B,D,E} 



Therefore, states of the 
reduced DFA is  {(Ac),B,D,E} 

b 
a 

a 

a 
b b 

(A,C) B D E 

a,b 

M = { Q, ∑, δ, q0, F}. 

Q ={(A,C),B, D, E }. 

∑ = { a,b}. 

q0 = {q0}. 

F = { E}. 

           a b 

   (A,C)  B (A,C)    

      B 

      D 

      E* 

 B 

 B 

(A,C) 

 

D    

E    

(A,C)  

   



12 

DFA Minimization: Example 

f b c d e a g 

h 

g 

f 

e 

d 

c 

b a 

e 

b 

f 

c 

g 

d 

h 

0 

0 

0 

0 

0 

0 

0 

0 1 

1 

1 1 

1 

1 

1 

1 

1. Initialize table entries: 
     Unmarked, empty list 



13 

DFA Minimization: Example 

f b c d e a g 

h 

g 

f 

e 

d 

c 

b 

2. Mark pairs of final & non final 
states 

a 

e 

b 

f 

c 

g 

d 

h 

0 

0 

0 

0 

0 

0 

0 

0 1 

1 

1 1 

1 

1 

1 

1 

(a,b) (a,c) (a,d) (a,e) (a,f) (a,g) (a,h) 

(b,c) (b,d) (b,e) (b,f) (b,g) (b,h) 

(c,d) (c,e) (c,f) (c,g) (c,h) 

(d,e) (d,f) (d,g) (d,h) 

(e,f) (e,g) (e,h) 

(f,g) (f,h) 

(g,h) 

Basis Rule 



a 

e 

b 

f 

c 

g 

d 

h 

0 

0 

0 

0 

0 

0 

0 
0 1 

1 

1 1 

1 

1 

1 

1 

f b c d e a g 

h 

g 

f 

e 

d 

c 

b 

(a,b) (a,d) (a,e) (a,f) (a,g) 

(b,d) (b,e) (b,f) (b,g) (b,h) 

(d,e) (d,f) (d,g) 

(e,f) (e,g) 

(f,g) (f,h) 

(g,h) 

(e,h) 

(d,h) 

(a,b) (f,c) (b,g) 0 1 

(a,d) (f,g) (b,c) 0 1 

(a,e) (f,f) (b,h) 0 1 

(a,f) (f,g) (b,c) 0 1 

(a,g) (f,e) (b,g) 0 1 

(b,d) (c,g) (g,c) 0 1 

(b,e) (c,f) (g,h) 0 1 

(b,f) (c,g) (g,c) 0 1 

(b,g) (c,e) (g,g) 0 1 

(b,h) (c,c) (g,g) 0 1 

(a,h) (f,c) (b,g) 0 1 

(a,h) 

(d,e) (g,f) (c,h) 0 1 

(d,f) (g,g) (c,c) 0 1 

(d,g) (g,e) (c,g) 0 1 

(d,h) (g,c) (c,g) 0 1 

(e,f) (f,g) (h,c) 0 1 

(e,g) (f,e) (h,g) 0 1 

(e,h) (f,c) (h,g) 0 1 

(f,g) (g,e) (c,g) 0 1 

(f,h) (g,c) (c,g) 0 1 

(g,h) (e,c) (g,g) 0 1 

Repeat step 2 for 
remaining pair of state 



a 

e 

b 

f 

c 

g 

d 

h 

0 

0 

0 

0 

0 

0 

0 
0 1 

1 

1 1 

1 

1 

1 

1 

f b c d e a g 

h 

g 

f 

e 

d 

c 

b 

(a,e) (a,g) 

(b,h) 

(d,f) 

(a,e) (f,f) (b,h) 0 1 

(a,g) (f,e) (b,g) 
0 1 

(b,h) (c,c) (g,g) 0 1 

(e,g) (f,e) (h,g) 0 1 

(d,f) (g,g) (c,c) 0 1 

(e,g) 



a 

e 

b 

f 

c 

g 

d 

h 

0 

0 

0 

0 

0 

0 

0 
0 1 

1 

1 1 

1 

1 

1 

1 

f b c d e a g 

h 

g 

f 

e 

d 

c 

b 

(a,e) (b,h) (d,f) 

(a,e) (f,f) (b,h) 0 1 

(b,h) (c,c) (g,g) 0 1 

(d,f) (g,g) (c,c) 0 1 



a 

e 

b 

f 

c 

g 

d 

h 

0 

0 

0 

0 

0 

0 

0 
0 1 

1 

1 1 

1 

1 

1 

1 

f b c d e a g 

h 

g 

f 

e 

d 

c 

b 

(a,e) 

(b,h) 

(d,f) 

a  e 
b  h 
d  f ae bh 

df 

c 

g 

0 

0 

0 

0 

0 1 

1 

1 

1 

1 

Minimal 
DFA 



Example: Minimize FA 

2     

3 X X   

4     X   

5 X X   X   

6 X X X X X   

7 X X   X   X 

  1 2 3 4 5 6 

Final state is {6} 

And, Non-Final state is {1,2,3,4,5,7} 

(6, 1), (6,2), (6, 3), (6, 4), (6, 5), (6, 7) are distinguish pairs. 

Consider pair (1,2) 

 δ(1,a)=2  δ(1,b)=3 

 δ(2,a)=4  δ(2,b)=5 

Consider pair (1,3) 

 δ(1,a)=2  δ(1,b)=3 

 δ(3,a)=6  δ(3,b)=7 

pair (2,6) is distinguish, so (1,3) is distinguished pair. 

Consider pair (1,4) 

 δ(1,a)=2  δ(1,b)=3 

 δ(4,a)=4  δ(4,b)=5 

7 

a 

b 

b 

b 

b 

b 

b 

b 

a 

a 

a 

a 

a 

a 



Example: Minimize FA 

Consider pair (1,5) 

 δ(1,a)=2  δ(1,b)=3 

 δ(5,a)=6  δ(5,b)=7 

pair (2,6) is distinguish, so (1,5) is distinguished pair. 

Consider pair (1,7) 

 δ(1,a)=2  δ(1,b)=3 

 δ(7,a)=6  δ(7,b)=7 

pair (2,6) is distinguish, so (1, 7) is distinguished pair. 

Consider pair (2,3) 

 δ(2,a)=4  δ(2,b)=5 

 δ(3,a)=6  δ(3,b)=7 

pair (4,6) is distinguish, so (2, 3) distinguished pair. 

Consider pair (2,4) 

 δ(2,a)=4  δ(2,b)=5 

 δ(4,a)=4  δ(4,b)=5  

2     

3 X X   

4     X   

5 X X   X   

6 X X X X X   

7 X X   X   X 

  1 2 3 4 5 6 

7 

a 

b 

b 

b 

b 

b 

b 

b 

a 

a 

a 

a 

a 

a 



Example: Minimize FA 

Consider pair (2,5) 

 δ(2,a)=4  δ(2,b)=5 

 δ(5,a)=6  δ(5,b)=7 

pair (4,6) is distinguish, so (2,5) is distinguished pair. 

Consider pair (2,7) 

 δ(2,a)=4  δ(2,b)=5 

 δ(7,a)=6  δ(7,b)=7 

pair (4,6) is distinguish, so (2,7) is distinguished pair. 

Consider pair (3,4) 

 δ(3,a)=6  δ(3,b)=7 

 δ(4,a)=4  δ(4,b)=5 

pair (6,4) is distinguish, so (3,4) is distinguish pair. 

Consider pair (3,5) 

 δ(3,a)=6  δ(3,b)=7 

 δ(5,a)=6  δ(5,b)=7 

 

2     

3 X X   

4     X   

5 X X   X   

6 X X X X X   

7 X X   X   X 

  1 2 3 4 5 6 
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b 
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b 

b 

b 

b 

a 

a 

a 

a 

a 

a 



Example: Minimize FA 

Consider pair (3,7) 

 δ(3,a)=6  δ(3,b)=7 

 δ(7,a)=6  δ(7,b)=7 

Consider pair (4,5) 

 δ(4,a)=4  δ(4,b)=5 

 δ(5,a)=6  δ(5,b)=7 

pair (6,4) is distinguish, so (4,5) is distinguish. 

Consider pair (4,7) 

 δ(4,a)=4  δ(4,b)=5 

 δ(7,a)=6  δ(7,b)=7 

pair (4,6) is distinguish, so (4,7) is distinguish. 

Consider pair (5,7) 

 δ(5,a)=6  δ(5,b)=7 

 δ(7,a)=6  δ(7,b)=7 

2     

3 X X   

4     X   

5 X X   X   

6 X X X X X   

7 X X   X   X 

  1 2 3 4 5 6 

7 

a 

b 
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b 
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b 
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a 

a 

a 

a 

a 



Example: Minimize FA 

2     

3 X X   

4     X   

5 X X   X   

6 X X X X X   

7 X X   X   X 

  1 2 3 4 5 6 

b 

a 

a 

b 

b 

a 

1=2 1=4 2=4 1=2=4 

3=5 3=7 5=7 3=5=7 
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a 
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b 

b 

b 

b 
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a 

a 

a 

a 

a 



Example of  Minimization 

 Minimize the following DFA. 

1 

9 8 7 

6 5 4 3 2 

10 

a 

b 

a 

b 

a b 

b a 

a 
b 

b 

a 

a 

b 

b 
a 

b 

a 

a, b 



Example of  Minimization 

 Now we can see that the language of this DFA is 

{w  *w contains aaa or bbb}. 



Example 

 Find a minimal DFA that accepts the language 

{w  * | w contains 010 and 101}. 
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DFA Minimization: Correctness 

Why is new DFA no larger than old DFA? 

Only removes states, never introduces new states. 

Obvious. 

 

Why is new DFA equivalent to old DFA? 

Only identify states that provably have same behavior. 

Could prove xL(M)  xL(M’) by inductions on derivations. 
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What About NFA Minimization? 

This algorithm doesn’t find a unique minimal NFA. 

 

 

 

Is there a (not necessarily unique) minimal NFA? 

? 

? 

Of course. 
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NFA Minimization 

In general, minimal NFA not unique! 

 

 

 

Example NFAs for 0+: 

 

 

 

 

Both minimal, but not isomorphic. 

0 

0 

0 

0 


