
|| Jai Sri Gurudev||

Sri Adichunchanagiri Shikshana Trust®

SJB INSTITUTE OF TECHNOLOGY
No. 67, BGS Health & Education City, Dr. Vishnuvardhan Road, Kengeri, Bengaluru -560060

Accredited by NAAC, Accredited by NBA. Certified by ISO 9001-2015

Department of Computer Science & Engineering

Subject: Automata Theory & Computability

Subject Code: 18CS54

Sem: V

Dr. Gopalakrishna M T,
 Professor, CSE

18CS54
Automata Theory &
Computability

Module-1
Review of
Mathematical
Theory

gopalakrishnamt@sjbit.edu.in

ll Jai Sri Gurudev ll

S J B INSTITUTE OF

TECHNOLOGY

Topics to be covered

• Introduction

• Mathematical Preliminaries & Terminology

• Languages

• Strings

Introduction

Computer Science stems from two starting points:

Mathematics: What can be computed?

And what cannot be computed?

Electrical Engineering: How can we build computers?

Not in this course.

 3

Introduction

Computability Theory deals with the profound mathematical basis

for Computer Science, yet it has some interesting practical

ramifications

 that I will try to point out sometimes.

The question we will try to answer in this course is:

“What can be computed? What Cannot be computed and where is

the line between the two?”

 4

Computational Models

A Computational Model is a mathematical object (Defined on paper)

that enables us to reason about computation and to study the

properties and limitations of computing.

We will deal with Three principal computational models in increasing

order of Computational Power.

 5

Computational Models

We will deal with three principal models of computations:

1. Finite Automaton (in short FA).

recognizes Regular Languages .

2. Stack Automaton.

recognizes Context Free Languages .

3. Turing Machines (in short TM).

recognizes Computable Languages .

 6

Formal Language and Automata Theory

Formal Language and Automata Theory

What is Automata Theory ?

Study of Abstract Machines Machine Which are not implemented but
represented by Using some Formal Notations

Input tape

Control Unit
Temporary Storage

Output

 An Automata is a Abstract Model of a
Digital Computer, which operates in
discrete time frame.

 The Automata reads the input, produce
the output depending on the state it is in
and can make decision in transferring the
input into the output.

It is also Basis for the theory of
Formal language.

Invented by “ALAN TURING”
in (1912-1954)

Different Kinds of Automata

Finite Automata (FA) Pushdown Automata(PDA) Turing Machine(TM)

Power of Automata's

< <

What is a Finite Automata (FA)

Branch of Automata Theory It is Mathematical Model of a Machine

Used to represent Behavioural Model of Machines

String

Input

Finite
Automata

“Accept or
Reject”

• Finite Automata consists of
finite set of states and
transitions from one state to
another state, that occurs on
input symbols chosen from
an input alphabets. OR

• Formal Definition FA
 Defined by 5 Tuples which is
 denoted by M.

 M = (Q, Σ, , q0, F)
where

Q is the finite set of states Σ is the alphabet

 : Q  Σ → Q is the transition function
q0  Q is the start state

F  Q is the set of accept states

How do you represent the FA?

Represented by Two Ways

Transition Diagram Transitional Table

Directed Graph

0

q0

0

q1

1

1

{ w | w has an even number of 1s}

 0 1

q0 q0 q1

q1 q1 q0

Transition Diagram

q2 q1
q0 q3 q4

q5

Initial State
represented by
Arrow

States represented by Circle
Transitions represented
by unidirectional Arrow

Final States Represented by
Double Circles

a b b a

a a
a,b b b

a, b

Some Mathematical
Preliminaries

Set

• A set is a collection of objects.

• The objects in a set are called elements of the set.

• Examples:

1. A = {11, 12, 21, 22}

2. B = {11, 12, 21, 11, 12, 22)

3. C = {x | x is odd integer greater than 1}

4. D = {x | x Є B and x ≤ 11}

Roster Notation

Set-builder Notation

Operations on Sets

• Operations on the sets are:

1. Complement

2. Union

3. Intersection

4. Set Difference

5. Symmetric Difference

6. Cartesian product

• The complement of a set A is the set
A’ of everything that is not an

element of A from Universal Set U.

• Example:

U = {1,2,3,4,5}

A = {1,2}

A’ = {3,4,5}

𝐴’ = *𝑥 ∈ 𝑈 | 𝑥 ∉ 𝐴+

U
A

Operations on Sets

• Operations on the sets are:

1. Complement

2. Union

3. Intersection

4. Set Difference

5. Symmetric Difference

6. Cartesian product

• The Union (𝐴 𝑈 𝐵) is a collection of
all distinct elements from both the

set A and B.

• Example:

A = {1, 3, 5, 7, 9}

B = {1, 2, 3, 4, 5}

A U B = {1, 2, 3, 4, 5, 7, 9}

𝐴 𝑈 𝐵 = *𝑥 | 𝑥 ∈ 𝐴 𝑜𝑟 𝑥 ∈ 𝐵+

U

𝐵 𝐴

Operations on Sets

• Operations on the sets are:

1. Complement

2. Union

3. Intersection

4. Set Difference

5. Symmetric Difference

6. Cartesian product

• The intersection A ∩ B of two sets
A and B is the set that contains all
elements of A that also belong to
B, but no other elements.

• Example:

A = {1, 3, 5, 7, 9}

B = {1, 2, 3, 4, 5}

A ∩ B = {1, 3, 5}

𝐴 ∩ 𝐵 = *𝑥 | 𝑥 ∈ 𝐴 𝑎𝑛𝑑 𝑥 ∈ 𝐵+

U
𝐴 𝐵

Operations on Sets

• Operations on the sets are:

1. Complement

2. Union

3. Intersection

4. Set Difference

5. Symmetric Difference

6. Cartesian product

• The set difference A - B of two sets A
and B is the set of everything in A but

not in B.

• Example:

A = {1, 3, 5, 7, 9}

B = {1, 2, 3, 4, 5}

A - B = {7, 9}

𝐴 – 𝐵 = *𝑥 | 𝑥 ∈ 𝐴 𝑎𝑛𝑑 𝑥 ∉ 𝐵+
 = *𝑥 | 𝑥 ∈ 𝐴+ ∩ *𝑥 | 𝑥 ∉ 𝐵+

 = 𝐴 ∩ 𝐵’

U
𝐴 𝐵

Operations on Sets

• Operations on the sets are:

1. Complement

2. Union

3. Intersection

4. Set Difference

5. Symmetric Difference

6. Cartesian product

• The symmetric difference A ⊖ B of
two sets A and B is the set of
everything in A but not in B or the set
of everything in B but not in A.

• Example:

A = {1, 3, 5, 7, 9}

B = {1, 2, 3, 4, 5}

A ⊖ B = {7, 9, 2, 4}

𝐴 ⊖ 𝐵 = (𝐴 – 𝐵) 𝑈 (𝐵 – 𝐴)

U
𝐴

𝐵

Operations on Sets

• Operations on the sets are:

1. Complement

2. Union

3. Intersection

4. Set Difference

5. Symmetric Difference

6. Cartesian product

• The Cartesian product A x B of two

sets A and B is the set of all ordered

pairs (a, b) where a ∈ A and b ∈ B.

• Example:

A = {1, 3, 5}

B = {2, 4}

A x B = {(1,2), (1,4), (3,2), (3,4), (5,2),

(5,4)}

𝐴 𝑥 𝐵 = 𝑎, 𝑏 𝑎 ∈ 𝐴 𝑎𝑛𝑑 𝑏 ∈ 𝐵+

Set of identities

• Commutative laws

• Associative laws

• Distributive laws

𝐴 ∩ 𝐵 = 𝐵 ∩ 𝐴
𝐴 𝑈 𝐵 = 𝐵 𝑈 𝐴

𝐴 ∩ (𝐵 ∩ 𝐶) = (𝐴 ∩ 𝐵) ∩ 𝐶
𝐴 𝑈 (𝐵 𝑈 𝐶) = (𝐴 𝑈 𝐵) 𝑈 𝐶

𝐴 𝑈 (𝐵 ∩ 𝐶) = (𝐴 𝑈 𝐵) ∩ (𝐴 𝑈 𝐶)
𝐴 ∩ (𝐵 𝑈 𝐶) = (𝐴 ∩ 𝐵) 𝑈 (𝐴 ∩ 𝐶)

Set of identities

• Idempotent laws

• Absorptive laws

• De Morgan laws

𝐴 𝑈 𝐴 = 𝐴
𝐴 ∩ 𝐴 = 𝐴

𝐴 𝑈 (𝐴 ∩ 𝐵) = 𝐴
𝐴 ∩ (𝐴 𝑈 𝐵) = 𝐴

(𝐴 𝑈 𝐵)’ = 𝐴’ ∩ 𝐵’
(𝐴 ∩ 𝐵)’ = 𝐴’ 𝑈 𝐵’

Set of identities

• Other complements laws

• Other empty set laws

• Other universal set laws

(𝐴’)’ = 𝐴
𝐴 ∩ 𝐴’ = Φ
𝐴 𝑈 𝐴’ = 𝑈

𝐴 𝑈 Φ = 𝐴
𝐴 ∩ Φ = Φ

𝐴 𝑈 𝑈 = 𝑈
𝐴 ∩ 𝑈 = 𝐴

Functions

• Domain: What can go into the function is called domain.

• Codomain: What may possibly come out from a function is
codomain.

• Range: What actually come out from a function is range. The
range of function is subset of codomain

• Example:

𝒇:𝑵𝑵, 𝒇(𝒙) = 𝟐𝒙 + 𝟏

f(1)=2(1)+1= 3

f(2)=2(2)+1= 5

f(3)=2(3)+1= 7

f(4)=2(4)+1= 9

• The range of function f(x) = {3, 5, 7, 9}

Range

1

2

3

4

3
2
1

4
5
6
7
8
9

10

Domain Codomain

A B

Relations

Relations

• A relation on a set A is defined as subset of 𝐴 × 𝐴.

• The relation 𝑅 is denoted as aRb where 𝑎, 𝑏 𝜖 𝐴 and pair

(𝑎, 𝑏) 𝜖 𝑅.

• Example:

𝑁 = *1,2,3+

𝑁 × 𝑁 = *(1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1), (3,2), (3,3)+

• The ‘=‘ relation on 𝑁 × 𝑁 is : {(1,1), (2,2), (3,3)}

 where

 1 = 1

 2 = 2

 3 = 3

Languages

Language

• A set of strings all of which are chosen from some Σ∗, where Σ is a

particular alphabet, is called a language. If Σ is an alphabet, and

𝐿 ⊆ Σ∗, then 𝐿 is said to be language over alphabet Σ.

• Language comprises of:

• Set of characters – Σ

• Set of strings (words) defined from set of character - Σ∗

• Language L is defined from Σ∗, and 𝐿 ⊆ Σ∗ because Σ∗ contains

many string which may not satisfy the rules of language.

• Example:

• Σ = {a, b}

• Σ∗ = {^, a, b, aa, ab, ba, bb, aaa, aab, aba, abb, baa, …}

Operations over Language
• Operations over the language are:

1. Concatenation

2. Union

3. * (Kleene closure)

4. +

 If 𝐿1, 𝐿2 ⊆ Σ
∗ then concatenation is defined as

𝐿1𝐿2 = 𝑥𝑦 𝑥 𝜖 𝐿1 𝑎𝑛𝑑 𝑦 𝜖 𝐿2+

Example:

𝐿1 = {hope, fear} and 𝐿2 = {less, fully}

hopeless

𝐿1𝐿2 = {hopeless, hopefully, fearless, fearfully}

Operations over Language
• Operations over the language are:

1. Concatenation

2. Union

3. * (Kleene closure)

4. +

 If 𝐿1, 𝐿2 ⊆ Σ∗ then union is defined as

𝐿1 | 𝐿2 = 𝑥 𝑥 𝜖 𝐿1 𝑜𝑟 𝑥 𝜖 𝐿2+

Example:

𝐿1 = {hope, fear} and 𝐿2 = {less, fully}

𝐿1 | 𝐿2 = {hope, fear, less, fully}

Operations over Language
• Operations over the language are:

1. Concatenation

2. Union

3. * (Kleene closure)

4. +

 • If 𝐿 is a set of words then by 𝐿∗ we mean the set of all finite strings

formed by concatenating words from S, where any word may be

used as often we like, and where the null string is also included.

𝐿∗ = 𝐿𝑖
∞

𝑖=0

Example: 𝐿 = {ab}

𝐿* = {^, ab, abab, ababab, abababab, ….}

Operations over Language
• Operations over the language are:

1. Concatenation

2. Union

3. * (Kleene closure)

4. +

 • If 𝐿 is a set of words then by 𝐿+ we mean the set of all finite

strings formed by concatenating words from L, where any word

may be used as often we like, and where the null string is not

included.

𝐿+ = 𝐿𝑖
∞

𝑖=1

Example:𝐿 = {ab}

𝐿+ = {ab, abab, ababab, abababab, ….}

Star: A* = { w1 …wk | k ≥ 0 and each wi  A }

Power Set

Let A be the set, the set of all subset of set A is called power set of A and is denoted by 2A

Example : A={1,2,3} 2A = {{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3},{∅}}

Empty Set Set Containing no Elements Example: S={} or {∅}

Finite and infinite set

If a set containing finite number of elements Example : s ={1,2,3,4}, |s| =4

If a set containing an infinite number of elements Example : Natural numbers

Star: A* = { w1 …wk | k ≥ 0 and each wi  A }

Grammars:
Set of Rules or protocols

Example A typical rule of English grammar is sentence can consists of a noun phrased
followed by predicates

Ex. SIHI ate Slowly

Noun Verb
Adverb

Rules

Sentence Noun/Verb/Adverb

Noun SIHI

Verb ate

Adverb Slowly

Star: A* = { w1 …wk | k ≥ 0 and each wi  A }

Language

Each Language consists of Alphabets from which the word, statements etc., can be derived

Alphabets An Alphabets is a finite and non empty set of symbols and is denoted by Σ

Symbols A Symbols is an abstract entity Examples: Letter or Digits

Letter=A/B/C/D………………../Z/a/b/c/d/……………./z

Digits=0/1/2/3/…………./9

Strings The sequences of symbols from the alphabets(Σ) Examples: Σ ={a,b,c}

Empty Strings Empty string is denoted by (epsilon) is consists of 0 symbols |  |=0

Star: A* = { w1 …wk | k ≥ 0 and each wi  A }

Alphabets and Strings :

We will use small alphabets  ba,

Strings

baaabbbaaba

baba

abba

ab

a

abbaw

bbbaaav

abu







Star: A* = { w1 …wk | k ≥ 0 and each wi  A }

String Operations

m

n

bbbv

aaaw





21

21





bbbaaa

abba

Concatenation

mn bbbaaawv  2121 abbabbbaaa

Reveres

naaaw 21
12aaaw n

R 

ababaaabbb bbbaaababa

Star: A* = { w1 …wk | k ≥ 0 and each wi  A }

String Length

naaaw 21

Length: nw 

Examples:

1

2

4







a

aa

abba

42

Recursive Definition of Length

Example :

1a

1 wwawa

4

1111

111

11

1











a

ab

abbabba

For any letter :

For any string :

43

Length of Concatenation

Example:

vuuv 

853

8

5,

3,









vuuv

aababaabuv

vabaabv

uaabu

44

Empty String

A string with no letters: 
Observations: 0

www 

abbaabbaabba 

Hierarchy of Languages

1

D=decidable

SD = Semidecidable

Chomsky Hierarchy of Languages

Languages from “simplest” to “complex”

Each is a subset of the ones below

• Regular

• Context Free

• Context Sensitive

• Recursively Enumerable

Can be defined by the type of

Machine that will recognize it.
2 Noam Chomsky

Regular Languages

A Regular Language is one that can be recognized by a

Finite State Machine.

3

An FSM to accept a*b*:

Finite Automata(FA)
or

 Finite State Machine (FSM)

Finite Automata

• A finite automaton, or finite state machine is a 5-
tuple (𝑄, Σ, 𝑞0, 𝐹, 𝛿) where
– 𝑄 is finite set of states;
– Σ is finite alphabet of input symbols;
– 𝑞0 𝜖 𝑄 (initial state);
– 𝐹 ⊆ 𝑄 (the set of accepting states);
– 𝛿 is a function from 𝑄 × Σ 𝑡𝑜 𝑄 (the transition

function).

• For any element 𝑞 of 𝑄 and any symbol 𝑎 𝜖 Σ, we
interpret 𝛿(𝑞, 𝑎) as the state to which the FA
moves, if it is in state 𝑞 and receives the input 𝑎.

Example: Finite Automata

• 𝑀 = (𝑄, Σ, 𝑞0, 𝐹, 𝛿)

– 𝑄 = *𝑞0, 𝑞1, 𝑞2+

– Σ = *0,1+

– 𝑞0 = 𝑞0

– 𝐹 = *𝑞2+

– 𝛿 is defined as

δ Input

State 𝟎 𝟏

𝑞0 𝑞1 𝑞0

𝑞1 𝑞2 𝑞0

𝑞2 𝑞2 𝑞0

𝑞0 𝑞1 𝑞2

1

0

1

0

0

1

Applications of FA

• Lexical analysis phase of a compiler.

• Design of digital circuit.

• String matching.

• Communication Protocol for information
exchange.

Automata Theory & Modern-day
Applications

Automata
Theory &
Computability

Compiler
Design &
Programming
Languages

Computer
Organization &
Architecture

Computation models
 serial vs. parallel
DNA computing, Quantum computing

 Artificial Intelligence &
Information Theory

Algorithm
Design &
NP-Hardness

Scientific
Computing
• biological systems
• speech recognition
• modeling

9

Finite Automaton (FA or FSM)

• Informally, a state diagram that comprehensively captures all
possible states and transitions that a machine can take while
responding to a stream or sequence of input symbols

• Recognizer for “Regular Languages”

• Deterministic Finite Automata (DFA or DFSM)
– The machine can exist in only one state at any given time

• Non-deterministic Finite Automata (NFA or NDFSM)
– The machine can exist in multiple states at the same time

10

Deterministic Finite Automata -
Definition

• A Deterministic Finite Automaton (DFA) consists of:
– Q ==> a finite set of states

– ∑ ==> a finite set of input symbols (alphabet)

– q0 ==> a start state

– F ==> set of accepting states

– δ ==> a transition function, which is a mapping between

 Q x ∑ ==> Q

• A DFA is defined by the 5-tuple:
– {Q, ∑ , q0,F, δ }

11

What does a DFA do on reading an
input string?

• Input: a word w in ∑*

• Question: Is w acceptable by the DFA?

• Steps:
– Start at the “start state” q0

– For every input symbol in the sequence w do
• Compute the next state from the current state, given the current

input symbol in w and the transition function

– If after all symbols in w are consumed, the current state is
one of the accepting states (F) then accept w;

– Otherwise, reject w.

12

DFA for strings containing 01

q0

start
q1

0

Regular expression: (0+1)*01(0+1)*

1 0,1 0

1
q2

Accepting
state

• What if the language allows
 empty strings?

• What makes this DFA deterministic? • Q = {q0,q1,q2}

• ∑ = {0,1}

• start state = q0

• F = {q2}

• Transition table

q2 q2 *q2

q2 q1 q1

q0 q1 q0

1 0
st

at
es

symbols

0

0,1

0
0

1

1

1

0111 111

11

1

The machine accepts a string if the process ends in a double circle

1. Construct a DFA which accepts set of all strings of 0‟s and 1‟s

having at least “3 consecutive zeros”

Minimum string

L= 000,

0 0 0

1000,

1

0001,

1

0000,

,0

01000, 001000,

1

1

000 00 0

Accepted

.. … …………. …,

Continued Example -1

L= 000,

0 0 0

1000,

1

0001,

1

0000,

,0

01000, 001000,

1

1

01000 1000 0

Accepted

000 00

.. … …………. …,

0 0 0

1 1 ,0

1

1
Accepted

Q = {q0, q1, q2, q3}

Σ = {0,1}

 : Q  Σ → Q transition function

q0  Q is start state

F = {q3}  Q accept states

M = (Q, Σ, , q0, F) where

q0
q1 q2

q3

 0 1

q0 q1 q0

q1 q2 q0

q2 q3 q0

q3 q3 q
*

->

2. Construct a DFA which accepts set of all strings of 0‟s and 1‟s

having at least “2 consecutive zeros”

Minimum string

L= 00,

0 0

100,

1

001,

1

000,

,0

0100,

1

0100 100

Accepted

.. … …………. …,

00
0

0 0

1

1 ,0

Accepted q0
q1

q2

1

Q = {q0, q1, q2}

Σ = {0,1}

 : Q  Σ → Q transition function

q0  Q is start state

F = {q2}  Q accept states

M = (Q, Σ, , q0, F) where

 0 1

q0 q1 q0

q1 q2 q0

q2 q2 q2
*

->

3. Construct a DFA which accepts set of all strings of 0‟s and 1‟s

ending with the „000‟.

Minimum string

L= 000,

0 0 0

1000,

1

0000,

0

01000, 001000,

1
1

000 00

Accepted

.. … …………. …, 0001000,

1

0

3. Construct a DFA which accepts set of all strings of 0‟s and 1‟s

ending with the „000‟.

Minimum string

L= 000,

0 0 0

1000,

1

0000,

0

01000, 001000,

1
1

1000 00

Accepted

.. … …………. …, 0001000,

1

0 000

3. Continued Example 3

0 0 0

1

1
1

Accepted 1

Q = {q0, q1, q2, q3}

Σ = {0,1}

 : Q  Σ → Q transition function

q0  Q is start state

F = {q3}  Q accept states

M = (Q, Σ, , q0, F) where

 0 1

->q0 q1 q0

 q1 q2 q0

 q2 q3 q0

 q*3 q3 q3

q0
q1 q2

q3

0

4. Construct a DFA which accepts set of all strings of a‟s and b‟s

“starting with a ending with a”

Minimum string

L= aa,

a a

aba,

b

aaa,

a

aaba, aaabbaa,

b

aaba aba

.. … …………. …,

ba

b

a,b

Dead state/rejecting state

a

Accepted

Continued Example-4

a a

b
a

b
b

a,b Dead state/rejecting state

Accepted

q0
q1

q2

q3

Q = {q0, q1, q2, q3}

Σ = {0,1}

 : Q  Σ → Q transition function

q0  Q is start state

F = {q2}  Q accept states

M = (Q, Σ, , q0, F) where

 a b

->q0 q1 q3

 q1 q2 q1

 q*2 q2 q1

 q3 q3 q3

5. Build a FSM with any string that ends in „1‟ over the alphabet or

(Binary ODD Number)

Minimum string

L= 1,

1

111, 001,

1

101,

0

01011
1011

.. … …………. …,

011

Accepted

0

11
1

Continued Example 5

L= 1,

1

111, 001,
1

101,

0

.. … …………. …,

Accepted

0

Q = {q0, q1}

Σ = {0,1}

 : Q  Σ → Q transition function

q0  Q is start state

F = {q1}  Q Accept states

M = (Q, Σ, , q0, F) where

 0 1

->q0 q0 q1

 q*1 q0 q1

q0
q1

5. Build a FA with any string that ends in „0‟ over the alphabet or

(Binary EVEN Number)

Minimum string

L= 00,

0

10, 010,

0

1

10100
0100

.. … …………. …,

Accepted

1

100
0

00

Continued Example

0

0

1

1

q0
q1

Q = {q0, q1}

Σ = {0,1}

 : Q  Σ → Q transition function

q0  Q is start state

F = {q1}  Q Accept states

M = (Q, Σ, , q0, F) where

 0 1

->q0 q1 q0

 q*1 q1 q0

5. Build a FA that accepts all strings over an alphabet

Minimum string

L= a, aaa, ab,

a

.. … …………. …,

Accepted

Σ = {a,b}

 bbbbb,

,b

ababa baba aba ba a

5. Build a FA with any string that begins with „0‟.

Minimum string

L= a,

a

aa, ab,

a

.. … …………. …,

Accepted

b

a , b

,b

7.Obtain a DFA to accept string f 0‟s and 1‟s having a substring „00‟

Minimum string

L= 00,

0

000, 001,

0

.. … …………. …,

Accepted

1

,1

0

100, 0100,

1

𝐴 𝐵

𝐶

𝐷

0

1

0

1

0

1

0

1

Minimum string

L= 00, 01, 000, 1000, 0001, 00101 …,

Example: The string with next to last symbol as 0.

01101

𝐴 𝐵 𝐶
1

0 1

0

0

1

Minimum string

L= 10, 010, 110, 1010, 10010, 101010 …,

Example: The strings ending with 10.

0001110

The string ending in 10 or 11

A B

C

D

1

1

0

1

0

0

0

1

The string corresponding to Regular
expression {00}*{11}*

B

C A E
1

0

D
1

1

1

0
0

0

0,1

Construct a DFSM for accepting o’s and 1’s,
a. String consisting ODD Number of 0’s and 1’s.
b. String consisting EVEN Number of 0’s and 1’s.
c. String consisting ODD Number of 0’s and Even Number of 1’s.
d. String consisting ODD Number of 1’s and Even number 1’s.

odd 1
even 0

odd 0
odd 1

odd 0
even 1

even 1
even 0

0 0 0 0

1

1

1

1

FA Examples

• (a+b)*baaa

A C

E

B

a

D

a

a

a

a

b

b

b

b b

-Non-Deterministic Finite State

Automata(Epsilon-NFA)


• We extend the class of NFAs by allowing instantaneous (ε)

transitions:

1. The automaton may be allowed to change its state without

reading the input symbol.

2. In diagrams, such transitions are depicted by labeling the

appropriate arcs with ε.

3. Note that this does not mean that ε has become an input symbol.

On the contrary, we assume that the symbol ε does not belong to

any alphabet.

NFA with ∈ move: If any FSM contains ε transaction or move, the
finite automata is called NFA with ∈ move.

Example

• { an | n is even or divisible by 3 }

Formal Definition of -NDFSM

 FqQM ,,,, 0

:Q

:

:0q

:F

Set of states, i.e.  210 ,, qqq

: Input aplhabet, i.e.  ba,

Transition function

Initial state

Accepting states

  QQx 2: 



Note ε is never a member of 

ε-NDFSM

• ε -NFAs add a convenient feature but (in a sense) they bring us

nothing new: they do not extend the class of languages that can

be represented. Both NFAs and ε-NFAs recognize exactly the

same languages.

ε-Closure

• ε-closure of a state
The ε-closure of the state q, denoted ECLOSE(q), is the set that
contains q, together with all states that can be reached starting at q
by following only ε-transitions.

ε-Closure

ECLOSE(P) ={P,Q,R,S}
ECLOSE(R)={R,S}
ECLOSE(x)={x} for the remaining 5 states
 {Q,Q1,R1,R2,R2}

In the above example:

Applying Definitions of ECLOSE(𝑆)

 𝑞0

 𝑠 𝑝

𝑡 𝑣

𝑤

𝑟

𝑢

ε

ε

ε ε

ε

0

0

0 0

0

1

1

1

ECLOSE 𝑞0 = * 𝑞0, 𝑝, 𝑡 +

ECLOSE 𝑠 = 𝑤, 𝑝, 𝑡 + * 𝑞0, 𝑠,

 𝑞0

 𝑠 𝑝

𝑡 𝑣

𝑤

𝑟

𝑢

ε

ε

ε ε

ε

0

0

0 0

0

1

1

1

Applying Definitions of ECLOSE(𝑆)

Applying Definition of 𝛿∗

𝛿∗ 𝑞0, ε
 = *𝑞0, 𝑝, 𝑡+
 = ECLOSE(*𝑞0+)

 𝑞0

 𝑠 𝑝

𝑡 𝑣

𝑤

𝑟

𝑢

ε

ε

ε ε

ε

0

0

0 0

0

1

1

1

NFA -ε to DFA

NFA - ε NFA DFA

Conversion from NFA with ε to DFA

 Steps for converting NFA with ε to DFA:

Step 1: We will take the ε-closure for the starting state of NFA as a starting

state of DFA.

Step 2: Find the states for each input symbol that can be traversed from

the present. That means the union of transition value and their closures for

each state of NFA present in the current state of DFA.

Step 3: If we found a new state, take it as current state and repeat step 2.

Step 4: Repeat Step 2 and Step 3 until there is no new state present in the

transition table of DFA.

Step 5: Mark the states of DFA as a final state which contains the final state

of NFA.

Example 1: Convert the NFA with ε into its equivalent DFA.

Solution:
Let us obtain ε-closure of each state.

ε-closure {q0} = {q0, q1, q2}
ε-closure {q1} = {q1}
ε-closure {q2} = {q2}
ε-closure {q3} = {q3}
ε-closure {q4} = {q4}

Now, let ε-closure {q0} = {q0, q1, q2} be state A. Hence

δ'(A, 0) = ε-closure {δ((q0, q1, q2), 0)}
 = ε-closure {δ(q0, 0) ∪ δ(q1, 0) ∪ δ(q2, 0) }

 = ε-closure {q3}
 = {q3} call it as state B.

δ'(A, 1) = ε-closure {δ((q0, q1, q2), 1) }
 = ε-closure {δ((q0, 1) ∪ δ(q1, 1) ∪ δ(q2, 1) }

 = ε-closure {q3}
 = {q3} = Same as B then Rewrite State B

Example 1: Convert the NFA with ε into its equivalent DFA.

Solution:
Let us obtain ε-closure of each state.

δ'(C, 0) = ε-closure {δ(q4, 0) }
 = ϕ New state D
δ'(C, 1) = ε-closure {δ(q4, 1) }
 = ϕ state D

δ'(B, 0) = ε-closure {δ(q3, 0)}
 = ϕ

δ'(B, 1) = ε-closure {δ(q3, 1) }
 = ε-closure{q4}
 = {q4} New state C

For state C:

The DFA will be,

A CB
11,0

0 1,0

M = { Q, ∑, δ, q0, F}.

Q ={A,B, C, D }.

∑ = { 0,1}.

q0 = {q0}.

F = { C}.

Transitional Table

 0 1

A B B

B

C*

D

D

D

D

C

D

D

a, b

D

Example 2: Convert the given NFA into its equivalent DFA.

Solution:
Let us obtain the ε-closure of each state.

ε-closure(q0) = {q0, q1, q2}
ε-closure(q1) = {q1, q2}
ε-closure(q2) = {q2}

Now we will obtain δ' transition.
Let ε-closure(q0) = {q0, q1, q2} call it as state A.

δ'(A, 0) = ε-closure{δ((q0, q1, q2), 0)}
 = ε-closure{δ(q0, 0) ∪ δ(q1, 0) ∪ δ(q2,0)}

 = ε-closure{q0}
 = {q0, q1, q2} Same as state A

δ'(A, 1) = ε-closure{δ((q0, q1, q2), 1)}
 = ε-closure{δ(q0, 1) ∪ δ(q1, 1) ∪ δ(q2,1)}

 = ε-closure{q1}
 = {q1, q2} call it as state B

δ'(A, 2) = ε-closure{δ((q0, q1, q2), 2)}
 = ε-closure{δ(q0, 2) ∪ δ(q1, 2) ∪ δ(q2,2)}

 = ε-closure{q2}
 = {q2} call it state C

Example 2: Convert the given NFA into its equivalent DFA.
Solution: Continue….

Now we will find the transitions on states B and C for each input.
Hence

δ'(B, 0) = ε-closure{δ((q1, q2), 0)}
 = ε-closure{δ(q1, 0) ∪ δ(q2,0)}
 = ε-closure{ϕ}
 = ϕ ->State D

δ'(B, 1) = ε-closure{δ((q1, q2), 1)}
 = ε-closure{δ(q1, 1) ∪ δ(q2,1)}

 = ε-closure{q1}
 = {q1, q2} i.e. state B itself

δ'(B, 2) = ε-closure{δ((q1, q2), 2)}
 = ε-closure{δ(q1, 2) ∪ δ(q2, 2)}

 = ε-closure{q2}
 = {q2} i.e. state C itself

Example 2: Convert the given NFA into its equivalent DFA.
Solution: Continue….

Now we will obtain transitions for C:

δ'(C, 0) = ε-closure{δ(q2, 0)}
 = ε-closure{ϕ}
 = ϕ -> D

δ'(C, 1) = ε-closure{δ(q2, 1)}
 = ε-closure{ϕ}
 = ϕ ->D

δ'(C, 2) = ε-closure{δ(q2, 2)}
 = {q2}

Hence the DFA is

As A = {q0, q1, q2} in which final state q2 lies hence
A is final state.
B = {q1, q2} in which the state q2 lies hence B is also
final state.
C = {q2}, the state q2 lies hence C is also a final
state..

A

C

B
2

1
0

1,0

M = { Q, ∑, δ, q0, F}.

Q ={A,B, C, D }.

∑ = { 0,1}.

q0 = {q0}.

F = { C}.

Transitional Table

 0 1

A* B B

B*

C*

D

D

D

D

C

D

D

0, 1

D

0 1

2

2

3: Convert the given NFA into its equivalent DFA

ε-closure{0} ={0,1,2,4,7} ->A
δ(A, a)= {3,8}=ε-closure{3,8}={3,6,7,1,2,4,8}=>{1,2,3,4,6,7,8}->B
δ(A, b)= {5}=ε-closure{5}={5,6,7,1,2,4}=>{1,2,4,5,6,7}->C

δ(B, a)= {3,8}=ε-closure{3,8}={3,6,7,1,2,4,8}=>{1,2,3,4,6,7,8}->same as B
δ(B, b)= {5,9}=ε-closure{5,9}={1,2,4,5,6,7,9}->D

δ(C, a)= {3,8}=ε-closure{3,8}={3,6,7,1,2,4,8}=>{1,2,3,4,6,7,8}->same as B
δ(C, b)= {5}=ε-closure{5}={5,6,7,1,2,4}=>{1,2,4,5,6,7}-> same as C

δ(D, a)= {3,8}=ε-closure{3,8}={3,6,7,1,2,4,8}=>{1,2,3,4,6,7,8}->same as B
δ(D, b)= {5}=ε-closure{5,10}={5,6,7,1,2,4,10}=>{1,2,4,5,6,7,10}-> E

δ(E, a)= {3,8}=ε-closure{3,8}={3,6,7,1,2,4,8}=>{1,2,3,4,6,7,8}->same as B
δ(E, b)= {5}=ε-closure{5}={5,6,7,1,2,4}=>{1,2,4,5,6,7}-> same as C

3: Convert the given NFA into its equivalent DFA

Now Construct the DFA Transitional Table

 a b

->A B C

 B

 C

 D

 E*

B

B

B

B

D

C

E

C

A

C

B
a

a

b

D
b

a

b

E
b

b

a

a

Conversion from NFA- ε to DFA

 𝑞 𝛿 𝑞, ε 𝛿 𝑞, 0 𝛿 𝑞, 1

A {B} {A} 𝜙

B {D} {C} 𝜙

C 𝜙 𝜙 {B}

D 𝜙 {D} 𝜙

A B D

C

ε

0

ε

0 0

1

𝛿∗ 𝐴, ε

𝛿∗ 𝐴, 0
A D

0

B

= ε𝑐𝑙𝑠(𝛿 𝐴, 0 ∪ 𝛿 𝐵, 0 ∪ 𝛿 𝐷, 0)

= ε𝑐𝑙𝑠(𝐴, 𝐶, 𝐷)

= *𝐴, 𝐵, 𝐶, 𝐷+

C

0

0

0

= 𝐸𝐶𝐿𝑂𝑆𝐸 𝐴 = *𝐴, 𝐵, 𝐷+

Conversion from NFA- ε to DFA

Step 1: To convert NFA - ε to NFA

𝑞 𝛿∗ 𝑞, 0 𝛿∗ 𝑞, 1

𝐴 *𝐴, 𝐵, 𝐶, 𝐷+ 𝜙

𝐵 *𝐶, 𝐷+ 𝜙

𝐶 𝜙 *𝐵, 𝐷+

𝐷 *𝐷+ 𝜙

Conversion from NFA- ε to DFA

A D

0

B

= 𝜙

C

0

0

0

𝛿∗ 𝐴, 1 = ε𝑐𝑙𝑠 𝛿 𝐴, 1 ∪ 𝛿 𝐵, 1 ∪ 𝛿 𝐷, 1

= ε𝑐𝑙𝑠(𝜙)

𝑞 𝛿∗ 𝑞, 0 𝛿∗ 𝑞, 1

𝐴 *𝐴, 𝐵, 𝐶, 𝐷+ 𝜙

𝐵 *𝐶, 𝐷+ 𝜙

𝐶 𝜙 *𝐵, 𝐷+

𝐷 *𝐷+ 𝜙

𝛿∗ 𝐵, ε

𝛿∗ 𝐵, 0 = Λ(𝛿 𝐵, 0 ∪ 𝛿 𝐷, 0)

= Λ(𝐶, 𝐷)

= *𝐶, 𝐷+

= ε𝑐𝑙𝑠 𝐵 = *𝐵, 𝐷+

A D

0

B

C

0
0

0

0

0

Conversion from NFA- ε to DFA

𝑞 𝛿∗ 𝑞, 0 𝛿∗ 𝑞, 1

𝐴 *𝐴, 𝐵, 𝐶, 𝐷+ 𝜙

𝐵 *𝐶, 𝐷+ 𝜙

𝐶 𝜙 *𝐵, 𝐷+

𝐷 *𝐷+ 𝜙

Conversion from NFA- ε to DFA

= 𝜙

𝛿∗ 𝐵, 1 = ε𝑐𝑙𝑠(𝛿 𝐵, 1 ∪ 𝛿 𝐷, 1)

= ε𝑐𝑙𝑠(𝜙)

A D

0

B

C

0
0

0

0

0

𝑞 𝛿∗ 𝑞, 0 𝛿∗ 𝑞, 1

𝐴 *𝐴, 𝐵, 𝐶, 𝐷+ 𝜙

𝐵 *𝐶, 𝐷+ 𝜙

𝐶 𝜙 *𝐵, 𝐷+

𝐷 *𝐷+ 𝜙

𝛿∗ 𝐶, ε

𝛿∗ 𝐶, 0 = ε𝑐𝑙𝑠(𝛿 𝐶, 0)

= ε𝑐𝑙𝑠(𝜙)

= 𝜙

= ε𝑐𝑙𝑠 𝐶 = *𝐶+

A D

0

B

C

0
0

0

0

0

𝑞 𝛿∗ 𝑞, 0 𝛿∗ 𝑞, 1

𝐴 *𝐴, 𝐵, 𝐶, 𝐷+ 𝜙

𝐵 *𝐶, 𝐷+ 𝜙

𝐶 𝜙 *𝐵, 𝐷+

𝐷 *𝐷+ 𝜙

Conversion from NFA- ε to DFA

= *𝐵, 𝐷+

𝛿∗ 𝐶, 1 = ε𝑐𝑙𝑠(𝛿 𝐶, 1)

= ε𝑐𝑙𝑠(*𝐵+)

A D

0

B

C

0
0

0

0

0

1 1

𝑞 𝛿∗ 𝑞, 0 𝛿∗ 𝑞, 1

𝐴 *𝐴, 𝐵, 𝐶, 𝐷+ 𝜙

𝐵 *𝐶, 𝐷+ 𝜙

𝐶 𝜙 *𝐵, 𝐷+

𝐷 *𝐷+ 𝜙

Conversion from NFA- ε to DFA

𝛿∗ 𝐷, ε

𝛿∗ 𝐷, 0 = ε𝑐𝑙𝑠(𝛿 𝐷, 0)

= ε𝑐𝑙𝑠(*𝐷+)

= *𝐷+

= Λ 𝐷 = *𝐷+

A D

0

B

C

0
0

0

0

0

1 1
0

𝑞 𝛿∗ 𝑞, 0 𝛿∗ 𝑞, 1

𝐴 *𝐴, 𝐵, 𝐶, 𝐷+ 𝜙

𝐵 *𝐶, 𝐷+ 𝜙

𝐶 𝜙 *𝐵, 𝐷+

𝐷 *𝐷+ 𝜙

Conversion from NFA- ε to DFA

= 𝜙

𝛿∗ 𝐷, 1 = ε(𝛿 𝐷, 1)

= ε(𝜙)

A D

0

B

C

0
0

0

0

0

1 1
0

𝑞 𝛿∗ 𝑞, 0 𝛿∗ 𝑞, 1

𝐴 *𝐴, 𝐵, 𝐶, 𝐷+ 𝜙

𝐵 *𝐶, 𝐷+ 𝜙

𝐶 𝜙 *𝐵, 𝐷+

𝐷 *𝐷+ 𝜙 Resulting NFA

Accepting
State

𝐴 ∪ 𝑞0 if ε𝑐𝑙𝑠 𝑞0 ∩ 𝐴 ≠ 𝜙 in 𝑀
𝐴 otherwise

= {

Conversion from NFA- ε to DFA

𝛿 *𝐴+, 0 = *𝐴, 𝐵, 𝐶, 𝐷+

𝛿 *𝐴+, 1 = 𝜙

𝛿 *𝐴, 𝐵, 𝐶, 𝐷+, 0 = (𝛿 𝐴, 0 ∪ 𝛿 𝐵, 0 ∪ 𝛿 𝐶, 0 ∪ 𝛿 𝐷, 0)

= *𝐴, 𝐵, 𝐶, 𝐷+ ∪ {C,D} ∪ {𝜙} ∪ {D} = *𝐴, 𝐵, 𝐶, 𝐷+
 𝛿 *𝐴, 𝐵, 𝐶, 𝐷+, 1 = (𝛿 𝐴, 1 ∪ 𝛿 𝐵, 1 ∪ 𝛿 𝐶, 1 ∪ 𝛿 𝐷, 1)

= *𝐵, 𝐷+

𝛿 *𝐵, 𝐷+, 0 = (𝛿 𝐵, 0 ∪ 𝛿 𝐷, 0)

= *𝐶, 𝐷+

𝛿 *𝐵, 𝐷+, 1 = (𝛿 𝐵, 1 ∪ 𝛿 𝐷, 1)

= 𝜙 A

CD

ABCD

0

BD

0

1
0

Conversion from NFA- ε to DFA

Step 2: To convert NFA to FA

𝑞 𝛿∗ 𝑞, 0 𝛿∗ 𝑞, 1

𝐴 *𝐴, 𝐵, 𝐶, 𝐷+ 𝜙

𝐵 *𝐶, 𝐷+ 𝜙

𝐶 𝜙 *𝐵, 𝐷+

𝐷 *𝐷+ 𝜙

Conversion from NFA- ε to DFA

A CD

0

D

ABCD

0

0

0

0

1

𝛿 *𝐶, 𝐷+, 0 = (𝛿 𝐶, 0 ∪ 𝛿 𝐷, 0)

= *𝐷+

𝛿 *𝐶, 𝐷+, 1 = (𝛿 𝐶, 1 ∪ 𝛿 𝐷, 1)

= *𝐵, 𝐷+

𝛿 *𝐷+, 0 = *𝐷+

𝛿 *𝐷+, 1 = 𝜙

BD

1

𝑞 𝛿∗ 𝑞, 0 𝛿∗ 𝑞, 1

𝐴 *𝐴, 𝐵, 𝐶, 𝐷+ 𝜙

𝐵 *𝐶, 𝐷+ 𝜙

𝐶 𝜙 *𝐵, 𝐷+

𝐷 *𝐷+ 𝜙

DFA

Difference between DFA and NFA

SR.NO. DFA NFA

1
DFA stands for Deterministic Finite

Automata.

NFA stands for Nondeterministic Finite

Automata.

2

For each symbolic representation of the

alphabet, there is only one state transition

in DFA.

No need to specify how does the NFA react

according to some symbol.

3 DFA cannot use Empty String transition. NFA can use Empty String transition.

4 DFA can be understood as one machine.
NFA can be understood as multiple little

machines computing at the same time.

5
In DFA, the next possible state is distinctly

set.

In NFA, each pair of state and input symbol

can have many possible next states.

6 DFA is more difficult to construct. NFA is easier to construct.

7

DFA rejects the string in case it terminates

in a state that is different from the

accepting state.

NFA rejects the string in the event of all

branches dying or refusing the string.

8
Time needed for executing an input string

is less.

Time needed for executing an input string

is more.

9 All DFA are NFA. Not all NFA are DFA.

10 DFA requires more space. NFA requires less space then DFA.

Converting NDFSM to DFSM

1

Steps for converting NDFSM to DFSM

• Step 1: Initially Q' = ϕ

• Step 2: Add q0 of NFA to Q'. Then find the transitions from

this start state.

• Step 3: In Q', find the possible set of states for each input

symbol. If this set of states is not in Q', then add it to Q'.

• Step 4: In DFA, the final state will be all the states which

contain F(final states of NFA)
2

Step1: The start state of NDFSM is the start state of DFSM.

𝛿 𝑞, 𝑎 Step2: if ={q1,q2,q3,………………qn} is the transitions

defined for NDFSM, then [q1,q2,q3,………….qn]is a single state

of in DFSM from q on input symbol a.

Step3: [q1,q2,q3,……………..qn] is the final state of DFSM if

[q1,q2,q3,…………qn] contains a final state of NDFSM

Convert the given NDFSM to DFSM

Example 1: Conversion from NFA to FA

1

3

4

2

b

a

a

b

b

a

𝑞 𝛿 𝑞, 𝑎 𝛿 𝑞, 𝑏

1 {2,3} {4}

2 {𝜙} {4}

3 {4} {3}

4 {𝜙} *𝜙}

NDFSM

Transition Table

Example 1: Conversion from NFA to FA

𝛿1 1, 𝑎 = *2,3+

𝛿1 1, 𝑏 = *4+

𝛿1 2,3 , 𝑎 = 𝛿 2, 𝑎 ∪ 𝛿(3, 𝑎)
= *4+

𝛿1 2,3 , 𝑏 = 𝛿 2, 𝑏 ∪ 𝛿(3, 𝑏)
= *3,4+

𝛿1(4, 𝑎) = *∅+

𝛿1(4, 𝑏) = *∅+
1 3,4

b
2,3

4

b

a

a

Example 1: Conversion from NFA to FA
𝛿1 *3,4+, 𝑎 = 𝛿 3, 𝑎 ∪ 𝛿(4, 𝑎)

𝛿1 3,4 , 𝑏 = 𝛿 3, 𝑏 ∪ 𝛿(4, 𝑏)

= *3+

𝛿1(3, 𝑎) = *4+

𝛿1(3, 𝑏) = *3+

= *4+

1

3

3,4
b

2,3

4

b

b

b

a

a a

a

Ex-2:Convert the given NDFSM to DFSM

𝑞 𝛿 𝑞, 0 𝛿 𝑞, 1

→1 {1} {2}

2 {2,3} {2}

3* {3} {2,3}

Transition Table

1 3 2
0 1

NDFSM

0
0,1

1

0,1

Ex-2: Conversion from NFA to FA
𝛿1 1,0 = *1+

𝛿1 1,1 = *2+

𝛿1 2,0 = *2,3 +

𝛿1 2,1 = {2}

𝛿1(*2,3 + , 0) = 𝛿 2,0 ∪ 𝛿(3,0)

1 2,3

2

1

0

1 3 2
0 1

NDFSM

0
0,1

1

0,1

0

1

0,1

= *2,3+

𝛿1(*2,3 + , 1) = 𝛿 2,1 ∪ 𝛿(3,1)
= *2,3+

DFSM

Ex- 3: Conversion from NFA to DFA

δ Input

State 0 1

->𝑞0 *𝑞0, 𝑞1+ {𝑞1+

∗ 𝑞1 {𝜙} *𝑞0, 𝑞1+

Ex- 3: Conversion from NFA to DFA

𝑞0
,𝑞0,q1]

𝑞1

0

0, 1

 1 1

Now we will obtain δ' transition for state q0.
1.δ'([q0], 0) = {q0, q1}
 = [q0, q1] (new state generated)

δ'([q0], 1) = {q1} = [q1]

The δ' transition for state q1 is obtained as:
2. δ'([q1], 0) = ϕ

 δ'([q1], 1) = [q0, q1]

Now we will obtain δ' transition on [q0, q1].
3.δ'([q0, q1], 0) = δ(q0, 0) ∪ δ(q1, 0)
 = {q0, q1} ∪ ϕ

 = {q0, q1}
 = [q0, q1]

Similarly,
4.δ'([q0, q1], 1) = δ(q0, 1) ∪ δ(q1, 1)
 = {q1} ∪ {q0, q1}

 = {q0, q1}
 = [q0, q1]

Ex- 3: Conversion from NFA to DFA
As in the given NFA, q1 is a final state, then in DFA wherever, q1 exists that
state becomes a final state. Hence in the DFA, final states are [q1] and
[q0, q1]. Therefore set of final states F = {[q1], [q0, q1]}.

State 0 1

→[q0] [q0, q1] [q1]

*[q1] ϕ [q0, q1]

*[q0, q1] [q0, q1] [q0, q1]

The transition table for the constructed DFA will be:

Ex- 4: Conversion from NFA to DFA

δ Input

State 0 1

𝑞0 *𝑞𝑜+ *𝑞0, 𝑞1+

𝑞1 *𝑞2+ *𝑞2+

𝑞2 *𝑞3+ *𝑞3+

𝑞0 𝑞1

𝑞3 ∅ ∅

𝑞2 𝑞3
1

0, 1

0, 1 0, 1

Ex- 4: Conversion from NFA to DFA

𝑞0

0

𝛿1 *𝑞0+, 0 = *𝑞0+

𝛿1 *𝑞0+, 1 = *𝑞0, 𝑞1+

𝛿1 *𝑞0, 𝑞1+, 0 = 𝛿 𝑞0 , 0 ∪ 𝛿 𝑞1 , 0 = 𝑞0 ∪ 𝑞2 = *𝑞0, 𝑞2+

𝛿1 *𝑞0, 𝑞1+, 1 = 𝛿 𝑞0 , 1 ∪ 𝛿 𝑞1 , 1 = 𝑞0, 𝑞1 ∪ 𝑞2 = *𝑞0, 𝑞1, 𝑞2+

𝛿1 *𝑞0, 𝑞2+, 0 = 𝛿 𝑞0 , 0 ∪ 𝛿 𝑞2 , 0 = 𝑞0 ∪ 𝑞3 = *𝑞0, 𝑞3+

𝛿1 *𝑞0, 𝑞2+, 1 = 𝛿 𝑞0 , 1 ∪ 𝛿 𝑞2 , 1 = 𝑞0, 𝑞1 ∪ 𝑞3 = *𝑞0, 𝑞1, 𝑞3+

𝑞0𝑞1
1

𝑞0𝑞2

0

𝑞0𝑞1𝑞2

1

𝑞0𝑞3
0

𝑞0𝑞1𝑞3

1

Ex- 4: Conversion from NFA to DFA

𝑞0

0

𝛿1 *𝑞0, 𝑞3+, 0 = 𝛿 𝑞0 , 0 ∪ 𝛿 𝑞3 , 0 = *𝑞0+

𝑞0𝑞1
1

𝑞0𝑞2

0

𝑞0𝑞1𝑞2
1

𝑞0𝑞3

0

𝑞0𝑞1𝑞3

1

𝛿1 *𝑞0, 𝑞3+, 1 = 𝛿 𝑞0 , 1 ∪ 𝛿 𝑞3 , 1 = *𝑞0, 𝑞1+

0

1

𝛿1 *𝑞0, 𝑞1, 𝑞2+, 0 = 𝛿 𝑞0 , 0 ∪ 𝛿 𝑞1 , 0 ∪ 𝛿 𝑞2 , 0 = *𝑞0, 𝑞2, 𝑞3+

𝛿1 *𝑞0, 𝑞1, 𝑞2+, 1 = 𝛿 𝑞0 , 1 ∪ 𝛿 𝑞1 , 1 ∪ 𝛿 𝑞2 , 1 = *𝑞0, 𝑞1, 𝑞2, 𝑞3+

𝑞0𝑞1𝑞2𝑞3

𝑞0𝑞2𝑞3 0

1

Ex 4: Conversion from NFA to DFA

𝑞0

0

𝛿1 *𝑞0, 𝑞2, 𝑞3+, 0 = 𝛿 𝑞0 , 0 ∪ 𝛿 𝑞2 , 0 ∪ 𝛿 𝑞3 , 0 = *𝑞0, 𝑞3+

𝑞0𝑞1
1

𝑞0𝑞2

0

𝑞0𝑞1𝑞2
1

𝑞0𝑞3

0

𝑞0𝑞1𝑞3

1

𝛿1 *𝑞0, 𝑞2, 𝑞3+, 1 = 𝛿 𝑞0 , 1 ∪ 𝛿 𝑞2 , 1 ∪ 𝛿 𝑞3 , 1 = *𝑞0, 𝑞1, 𝑞3+

0

1

𝛿1 *𝑞0, 𝑞1, 𝑞3+, 0 = 𝛿 𝑞0 , 0 ∪ 𝛿 𝑞1 , 0 ∪ 𝛿 𝑞3 , 0 = *𝑞0, 𝑞2+

𝛿1 *𝑞0, 𝑞1, 𝑞3+, 1 = 𝛿 𝑞0 , 1 ∪ 𝛿 𝑞1 , 1 ∪ 𝛿 𝑞3 , 1 = *𝑞0, 𝑞1, 𝑞2+

𝑞0𝑞1𝑞2𝑞3

𝑞0𝑞2𝑞3 0

1

0

1

0

1 𝑞0 𝑞0𝑞1

𝑞0𝑞2

𝑞0𝑞1𝑞2

𝑞0

0

𝑞0𝑞1
1

𝑞0𝑞2

0

𝑞0𝑞1𝑞2
1

𝑞0𝑞3

0

𝑞0𝑞1𝑞3

1

0

1

𝛿1 *𝑞0, 𝑞1, 𝑞2, 𝑞3+, 0 = 𝛿 𝑞0 , 0 ∪ 𝛿 𝑞1 , 0 ∪ 𝛿 𝑞2 , 0 ∪ 𝛿 𝑞3 , 0
= *𝑞0, 𝑞2, 𝑞3+

𝛿1 *𝑞0, 𝑞1, 𝑞2, 𝑞3+, 1 = 𝛿 𝑞0 , 1 ∪ 𝛿 𝑞1 , 1 ∪ 𝛿 𝑞2 , 1 ∪ 𝛿 𝑞3 , 1
= *𝑞0, 𝑞1, 𝑞2, 𝑞3+

𝑞0𝑞1𝑞2𝑞3

𝑞0𝑞2𝑞3 0

1

0

1

0

1

0 1

• As now no new states are
obtained, the process
stops and we need to
define the accepting
states.

• To define accepting states,
the states which contain
the accepting states of
NFA will be accepting
states of final FA.

Ex 4: Conversion from NFA to DFA

State Minimization

Minimizing a DFA

 To minimize a DFA is to find an equivalent DFA that

has the least possible number of states.

 If the DFA is going to be used to write a program

(e.g., a compiler) or to design hardware, then there

may be a significant benefit in minimizing it before

implementing it.

Minimizing a DFA

 The problem is to determine which states are

distinguishable and which are indistinguishable.

 To minimize a DFA, we want to identify its

equivalence classes of indistinguishable states and

replace them with single states.

Minimizing a DFA by Table filling Method

 A pair of states (p , q) is said to be distinguishes, if there

is a string w such that, either

 δ(p, w) F & δ(q, w) ∉ F

 OR

δ(p, w) ∉ F & δ(q, w)  F, then (p,q) are

distinguishes states

Minimizing a DFA by Table filling Method

 A pair of states (p , q) is said to be Indistinguishable, if

there is a string w such that, either

 δ(p, w) F & δ(q, w)  F

 OR

δ(p, w)  Q-F & δ(q, w)  Q-F, then (p,q) are

Indistinguishable states

Rules

1. Basis: for each p in Q-F & q in F mark (p,q)

2. Induction steps: for any pair (p,q), if there is some

input ‘a’ such that δ(p, a) , δ(q, a) is mark, then

mark (p,q) .

3. Repeat step2 until no more pair can be marked.

1. Minimize the following DFA

Transitional Table

 a b

->A B C

 B

 C

 D

 E*

B

B

B

B

D

C

E

C

B

C

D

E

A B
C D

Solutions

Table

Pairs of states
(A,B) (A,C) (A,D) (A,E)

(B,C) (B,D) (B,E)

(C,D) (C,E)

(D,E)

x0 x0 x0 x0

x1
x1 x1

(A,B) (C,D) (B,B)
a b

(A,C) (C,C) (B,B) a b

(A,D) (C,E) (B,B) a b

(B,C) (D,C) (B,B) a b

(B,D) (D,E) (B,B) a b

(C,D) (C,E) (B,B) a b

Repeat step 2 for
remaining pair of state

Basis Rule

B

C

D

E

A B
C D

Solutions

Table
Pairs of states

(A,B) (A,C)

(B,C)

x0 x0 x0 x0

x1
x1 x1

x2

x2

(A,B) (C,D) (B,B) a b

(A,C) (C,C) (B,B) a b

(B,C) (D,C) (B,B) a b

Repeat step 2 for
remaining pair of state

(A,C) (C,C) (B,B) a b

No more pair of states
can be marked, then
stop

Therefore, states of the
reduced DFA is {(Ac),B,D,E}

Therefore, states of the
reduced DFA is {(Ac),B,D,E}

b
a

a

a
b b

(A,C) B D E

a,b

M = { Q, ∑, δ, q0, F}.

Q ={(A,C),B, D, E }.

∑ = { a,b}.

q0 = {q0}.

F = { E}.

  a b

 (A,C) B (A,C)

 B

 D

 E*

 B

 B

(A,C)

D

E

(A,C)

12

DFA Minimization: Example

f b c d e a g

h

g

f

e

d

c

b a

e

b

f

c

g

d

h

0

0

0

0

0

0

0

0 1

1

1 1

1

1

1

1

1. Initialize table entries:
 Unmarked, empty list

13

DFA Minimization: Example

f b c d e a g

h

g

f

e

d

c

b

2. Mark pairs of final & non final
states

a

e

b

f

c

g

d

h

0

0

0

0

0

0

0

0 1

1

1 1

1

1

1

1

(a,b) (a,c) (a,d) (a,e) (a,f) (a,g) (a,h)

(b,c) (b,d) (b,e) (b,f) (b,g) (b,h)

(c,d) (c,e) (c,f) (c,g) (c,h)

(d,e) (d,f) (d,g) (d,h)

(e,f) (e,g) (e,h)

(f,g) (f,h)

(g,h)

Basis Rule

a

e

b

f

c

g

d

h

0

0

0

0

0

0

0
0 1

1

1 1

1

1

1

1

f b c d e a g

h

g

f

e

d

c

b

(a,b) (a,d) (a,e) (a,f) (a,g)

(b,d) (b,e) (b,f) (b,g) (b,h)

(d,e) (d,f) (d,g)

(e,f) (e,g)

(f,g) (f,h)

(g,h)

(e,h)

(d,h)

(a,b) (f,c) (b,g) 0 1

(a,d) (f,g) (b,c) 0 1

(a,e) (f,f) (b,h) 0 1

(a,f) (f,g) (b,c) 0 1

(a,g) (f,e) (b,g) 0 1

(b,d) (c,g) (g,c) 0 1

(b,e) (c,f) (g,h) 0 1

(b,f) (c,g) (g,c) 0 1

(b,g) (c,e) (g,g) 0 1

(b,h) (c,c) (g,g) 0 1

(a,h) (f,c) (b,g) 0 1

(a,h)

(d,e) (g,f) (c,h) 0 1

(d,f) (g,g) (c,c) 0 1

(d,g) (g,e) (c,g) 0 1

(d,h) (g,c) (c,g) 0 1

(e,f) (f,g) (h,c) 0 1

(e,g) (f,e) (h,g) 0 1

(e,h) (f,c) (h,g) 0 1

(f,g) (g,e) (c,g) 0 1

(f,h) (g,c) (c,g) 0 1

(g,h) (e,c) (g,g) 0 1

Repeat step 2 for
remaining pair of state

a

e

b

f

c

g

d

h

0

0

0

0

0

0

0
0 1

1

1 1

1

1

1

1

f b c d e a g

h

g

f

e

d

c

b

(a,e) (a,g)

(b,h)

(d,f)

(a,e) (f,f) (b,h) 0 1

(a,g) (f,e) (b,g)
0 1

(b,h) (c,c) (g,g) 0 1

(e,g) (f,e) (h,g) 0 1

(d,f) (g,g) (c,c) 0 1

(e,g)

a

e

b

f

c

g

d

h

0

0

0

0

0

0

0
0 1

1

1 1

1

1

1

1

f b c d e a g

h

g

f

e

d

c

b

(a,e) (b,h) (d,f)

(a,e) (f,f) (b,h) 0 1

(b,h) (c,c) (g,g) 0 1

(d,f) (g,g) (c,c) 0 1

a

e

b

f

c

g

d

h

0

0

0

0

0

0

0
0 1

1

1 1

1

1

1

1

f b c d e a g

h

g

f

e

d

c

b

(a,e)

(b,h)

(d,f)

a  e
b  h
d  f ae bh

df

c

g

0

0

0

0

0 1

1

1

1

1

Minimal
DFA

Example: Minimize FA

2

3 X X

4 X

5 X X X

6 X X X X X

7 X X X X

 1 2 3 4 5 6

Final state is {6}

And, Non-Final state is {1,2,3,4,5,7}

(6, 1), (6,2), (6, 3), (6, 4), (6, 5), (6, 7) are distinguish pairs.

Consider pair (1,2)

 δ(1,a)=2 δ(1,b)=3

 δ(2,a)=4 δ(2,b)=5

Consider pair (1,3)

 δ(1,a)=2 δ(1,b)=3

 δ(3,a)=6 δ(3,b)=7

pair (2,6) is distinguish, so (1,3) is distinguished pair.

Consider pair (1,4)

 δ(1,a)=2 δ(1,b)=3

 δ(4,a)=4 δ(4,b)=5

7

a

b

b

b

b

b

b

b

a

a

a

a

a

a

Example: Minimize FA

Consider pair (1,5)

 δ(1,a)=2 δ(1,b)=3

 δ(5,a)=6 δ(5,b)=7

pair (2,6) is distinguish, so (1,5) is distinguished pair.

Consider pair (1,7)

 δ(1,a)=2 δ(1,b)=3

 δ(7,a)=6 δ(7,b)=7

pair (2,6) is distinguish, so (1, 7) is distinguished pair.

Consider pair (2,3)

 δ(2,a)=4 δ(2,b)=5

 δ(3,a)=6 δ(3,b)=7

pair (4,6) is distinguish, so (2, 3) distinguished pair.

Consider pair (2,4)

 δ(2,a)=4 δ(2,b)=5

 δ(4,a)=4 δ(4,b)=5

2

3 X X

4 X

5 X X X

6 X X X X X

7 X X X X

 1 2 3 4 5 6

7

a

b

b

b

b

b

b

b

a

a

a

a

a

a

Example: Minimize FA

Consider pair (2,5)

 δ(2,a)=4 δ(2,b)=5

 δ(5,a)=6 δ(5,b)=7

pair (4,6) is distinguish, so (2,5) is distinguished pair.

Consider pair (2,7)

 δ(2,a)=4 δ(2,b)=5

 δ(7,a)=6 δ(7,b)=7

pair (4,6) is distinguish, so (2,7) is distinguished pair.

Consider pair (3,4)

 δ(3,a)=6 δ(3,b)=7

 δ(4,a)=4 δ(4,b)=5

pair (6,4) is distinguish, so (3,4) is distinguish pair.

Consider pair (3,5)

 δ(3,a)=6 δ(3,b)=7

 δ(5,a)=6 δ(5,b)=7

2

3 X X

4 X

5 X X X

6 X X X X X

7 X X X X

 1 2 3 4 5 6

7

a

b

b

b

b

b

b

b

a

a

a

a

a

a

Example: Minimize FA

Consider pair (3,7)

 δ(3,a)=6 δ(3,b)=7

 δ(7,a)=6 δ(7,b)=7

Consider pair (4,5)

 δ(4,a)=4 δ(4,b)=5

 δ(5,a)=6 δ(5,b)=7

pair (6,4) is distinguish, so (4,5) is distinguish.

Consider pair (4,7)

 δ(4,a)=4 δ(4,b)=5

 δ(7,a)=6 δ(7,b)=7

pair (4,6) is distinguish, so (4,7) is distinguish.

Consider pair (5,7)

 δ(5,a)=6 δ(5,b)=7

 δ(7,a)=6 δ(7,b)=7

2

3 X X

4 X

5 X X X

6 X X X X X

7 X X X X

 1 2 3 4 5 6

7

a

b

b

b

b

b

b

b

a

a

a

a

a

a

Example: Minimize FA

2

3 X X

4 X

5 X X X

6 X X X X X

7 X X X X

 1 2 3 4 5 6

b

a

a

b

b

a

1=2 1=4 2=4 1=2=4

3=5 3=7 5=7 3=5=7

7

a

b

b

b

b

b

b

b

a

a

a

a

a

a

Example of Minimization

 Minimize the following DFA.

1

9 8 7

6 5 4 3 2

10

a

b

a

b

a b

b a

a
b

b

a

a

b

b
a

b

a

a, b

Example of Minimization

 Now we can see that the language of this DFA is

{w  *w contains aaa or bbb}.

Example

 Find a minimal DFA that accepts the language

{w  * | w contains 010 and 101}.

26

DFA Minimization: Correctness

Why is new DFA no larger than old DFA?

Only removes states, never introduces new states.

Obvious.

Why is new DFA equivalent to old DFA?

Only identify states that provably have same behavior.

Could prove xL(M)  xL(M’) by inductions on derivations.

27

What About NFA Minimization?

This algorithm doesn’t find a unique minimal NFA.

Is there a (not necessarily unique) minimal NFA?

?

?

Of course.

28

NFA Minimization

In general, minimal NFA not unique!

Example NFAs for 0+:

Both minimal, but not isomorphic.

0

0

0

0

